def activation_Exp(x): return 1.0*(tf.math.exp(x) -1.0) def activation_ln(x): return -1.0*tf.math.log(1.0 - (x))

时间: 2024-04-29 18:19:35 浏览: 20
这段代码定义了两个激活函数,分别为 `activation_Exp` 和 `activation_ln`。 其中,`activation_Exp` 函数采用了指数函数的形式,对输入 $x$ 进行变换,使其输出在 $[0, +\infty)$ 的范围内,公式为: $$ f(x) = e^x - 1 $$ `activation_ln` 函数则采用了对数函数的形式,对输入 $x$ 进行变换,使其输出在 $(-\infty, 0]$ 的范围内,公式为: $$ f(x) = -\ln(1-x) $$ 这两个激活函数的作用是将输入的数据进行非线性转换,增加模型的表达能力,能够更好地拟合复杂的数据分布。
相关问题

import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes=outputnodes self.lr=learningrate self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes)) self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes)) self.activation_function=lambda x:scipy.special.expit(x) pass def train(self,input_list,target_list): inputs=numpy.array(input_list,ndmin=2).T targets=numpy.array(target_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) output_errors=targets-final_outputs hidden_errors=numpy.dot(self.who.T,output_errors) self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs)) self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs)) pass def query(self,input_list): inputs=numpy.array(input_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) return final_outputs print('n')写一下注释

以下是对代码的注释: ```python import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): # 初始化神经网络的输入层、隐藏层、输出层的节点数以及学习率 self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes self.lr = learningrate # 初始化输入层到隐藏层和隐藏层到输出层的权重 # 对权重进行随机初始化,取值范围为均值为0,标准差为节点数的负平方根 self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes)) # 定义激活函数为 sigmoid 函数 self.activation_function = lambda x: scipy.special.expit(x) def train(self,input_list,target_list): # 将输入列表和目标列表转换为二维数组 inputs = numpy.array(input_list, ndmin=2).T targets = numpy.array(target_list, ndmin=2).T # 计算隐藏层的输入和输出 hidden_inputs = numpy.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) # 计算输出层的输入和输出 final_inputs = numpy.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) # 计算输出层误差和隐藏层误差 output_errors = targets - final_outputs hidden_errors = numpy.dot(self.who.T, output_errors) # 更新隐藏层到输出层和输入层到隐藏层的权重 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) def query(self,input_list): # 将输入列表转换为二维数组 inputs = numpy.array(input_list, ndmin=2).T # 计算隐藏层的输入和输出 hidden_inputs = numpy.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) # 计算输出层的输入和输出 final_inputs = numpy.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) # 返回最终输出 return final_outputs # 创建神经网络实例 input_nodes = 3 hidden_nodes = 3 output_nodes = 3 learning_rate = 0.3 n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate) # 使用训练数据进行训练 training_data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]] for data in training_data: n.train(data, data) # 使用测试数据进行测试 test_data = [0.2, 0.5, 0.8] print(n.query(test_data)) ``` 这个神经网络实现了一个简单的自编码器,训练数据和测试数据都是由一些简单的数字组成。

class MyDense(keras.layers.Layer): def __init__(self, units, activation=None, **kwargs): super().__init__(**kwargs) self.units = units self.activation = keras.activations.get(activation) def build(self, batch_input_shape): self.kernel = self.add_weight( name="kernel", shape=[batch_input_shape[-1], self.units], initializer="glorot_normal") self.bias = self.add_weight( name="bias", shape=[self.units], initializer="zeros") super().build(batch_input_shape) # must be at the end def call(self, X): return self.activation(X @ self.kernel + self.bias) def compute_output_shape(self, batch_input_shape): return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units]) def get_config(self): base_config = super().get_config() return {**base_config, "units": self.units, "activation": keras.activations.serialize(self.activation)}

这段代码定义了一个自定义的Keras层,名为MyDense。该层继承了Keras的Layer类,重写了__init__、build、call等方法。 在__init__方法中,定义了该层的参数units(输出维度)和激活函数activation,同时调用了父类的__init__方法。 在build方法中,定义了该层的权重kernel和偏置bias,权重的初始化方式为glorot_normal,偏置的初始化方式为zeros。同时调用了父类的build方法。 在call方法中,实现了该层的前向传播,即输入X与权重kernel相乘并加上偏置bias,再通过激活函数activation进行激活得到输出。 在compute_output_shape方法中,返回该层的输出shape。 在get_config方法中,返回该层的配置信息,包括units和activation等参数。

相关推荐

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropoutfrom tensorflow.keras import Model​# 在GPU上运算时,因为cuDNN库本身也有自己的随机数生成器,所以即使tf设置了seed,也不会每次得到相同的结果tf.random.set_seed(100)​mnist = tf.keras.datasets.mnist(X_train, y_train), (X_test, y_test) = mnist.load_data()X_train, X_test = X_train/255.0, X_test/255.0​# 将特征数据集从(N,32,32)转变成(N,32,32,1),因为Conv2D需要(NHWC)四阶张量结构X_train = X_train[..., tf.newaxis]    X_test = X_test[..., tf.newaxis]​batch_size = 64# 手动生成mini_batch数据集train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000).batch(batch_size)test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)​class Deep_CNN_Model(Model):    def __init__(self):        super(Deep_CNN_Model, self).__init__()        self.conv1 = Conv2D(32, 5, activation='relu')        self.pool1 = MaxPool2D()        self.conv2 = Conv2D(64, 5, activation='relu')        self.pool2 = MaxPool2D()        self.flatten = Flatten()        self.d1 = Dense(128, activation='relu')        self.dropout = Dropout(0.2)        self.d2 = Dense(10, activation='softmax')        def call(self, X):    # 无需在此处增加training参数状态。只需要在调用Model.call时,传递training参数即可        X = self.conv1(X)        X = self.pool1(X)        X = self.conv2(X)        X = self.pool2(X)        X = self.flatten(X)        X = self.d1(X)        X = self.dropout(X)   # 无需在此处设置training状态。只需要在调用Model.call时,传递training参数即可        return self.d2(X)​model = Deep_CNN_Model()loss_object = tf.keras.losses.SparseCategoricalCrossentropy()optimizer = tf.keras.optimizers.Adam()​train_loss = tf.keras.metrics.Mean(name='train_loss')train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')test_loss = tf.keras.metrics.Mean(name='test_loss')test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')​# TODO:定义单批次的训练和预测操作@tf.functiondef train_step(images, labels):       ......    @tf.functiondef test_step(images, labels):       ......    # TODO:执行完整的训练过程EPOCHS = 10for epoch in range(EPOCHS)补全代码

column_name = ["label"] column_name.extend(["pixel%d" % i for i in range(32 * 32 * 3)]) dataset = pd.read_csv('cifar_train.csv') #dataset = pd.read_csv('heart.csv') #dataset = pd.read_csv('iris.csuv') #sns.pairplot(dataset.iloc[:, 1:6]) #plt.show() #print(dataset.head()) #shuffled_data = dataset.sample(frac=1) #dataset=shuffled_data #index=[0,1,2,3,4,5,6,7,8,9,10,11,12,13] #dataset.columns=index dataset2=pd.read_csv('test.csv') #X = dataset.iloc[:, :30].values #y = dataset.iloc[:,30].values mm = MinMaxScaler() from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) X_train =dataset.iloc[:,1:].values X_test = dataset2.iloc[:,1:].values y_train = dataset.iloc[:,0].values y_test = dataset2.iloc[:,0].values print(y_train) # 进行独热编码 def one_hot_encode_object_array(arr): # 去重获取全部的类别 uniques, ids = np.unique(arr, return_inverse=True) # 返回热编码的结果 return tf.keras.utils.to_categorical(ids, len(uniques)) #train_y_ohe=y_train #test_y_ohe=y_test # 训练集热编码 train_y_ohe = one_hot_encode_object_array(y_train) # 测试集热编码 test_y_ohe = one_hot_encode_object_array(y_test) # 利用sequential方式构建模型 from keras import backend as K def swish(x, beta=1.0): return x * K.sigmoid(beta * x) from keras import regularizers model = tf.keras.models.Sequential([ # 隐藏层1,激活函数是relu,输入大小有input_shape指定 tf.keras.layers.InputLayer(input_shape=(3072,)), # lambda(hanshu, output_shape=None, mask=None, arguments=None), #tf.keras.layers.Lambda(hanshu, output_shape=None, mask=None, arguments=None), tf.keras.layers.Dense(500, activation="relu"), # 隐藏层2,激活函数是relu tf.keras.layers.Dense(500, activation="relu"), # 输出层 tf.keras.layers.Dense(10, activation="softmax") ])

最新推荐

recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

在TensorFlow中,`tf.nn.conv1d`和`layers.conv1d`都是用于执行一维卷积操作的函数,但它们在实现细节和使用上存在一些差异。这篇文章将深入探讨这两个函数的区别,并帮助理解它们在构建一维卷积神经网络(1D CNN)...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。