# 编码器 def encoder(input_shape, vocab_size, latent_dim): model = tf.keras.models.Sequential([ tf.keras.layers.Embedding(vocab_size, 256, input_shape=input_shape, name="encoder_embedding"), tf.keras.layers.LSTM(latent_dim, name="encode_lstm"), ],name="encoder") return model # 解码器 def decoder(output_shape, vocab_size, latent_dim): model = tf.keras.models.Sequential([ tf.keras.layers.RepeatVector(output_shape[0], input_shape=output_shape, name="decoder_repeatvector"), tf.keras.layers.LSTM(latent_dim, return_sequences=True,name="decode_lstm"), tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(vocab_size, activation='softmax'), name="decoder_td"), ], name="decoder") return model # expected shape=(None, None, 12), found shape=(None, 12, 256) # 定义模型 def build_model(input_shape, output_shape, vocab_size, latent_dim): encoder_model = encoder(input_shape, vocab_size, latent_dim) decoder_model = decoder(output_shape, vocab_size, latent_dim) model = tf.keras.models.Sequential([encoder_model, decoder_model]) return model改正一下模型
时间: 2024-03-15 07:42:42 浏览: 205
根据您提供的代码,您需要将编码器模型的LSTM层的return_sequences参数设置为True,以便正确地将输出形状传递给解码器模型。同时,您还需要将解码器模型的RepeatVector层的输入形状设置为output_shape[1],而不是output_shape[0]。修改后的代码如下所示:
```
# 编码器
def encoder(input_shape, vocab_size, latent_dim):
model = tf.keras.models.Sequential([
tf.keras.layers.Embedding(vocab_size, 256, input_shape=input_shape, name="encoder_embedding"),
tf.keras.layers.LSTM(latent_dim, return_sequences=True, name="encode_lstm"),
], name="encoder")
return model
# 解码器
def decoder(output_shape, vocab_size, latent_dim):
model = tf.keras.models.Sequential([
tf.keras.layers.RepeatVector(output_shape[1], input_shape=(latent_dim,), name="decoder_repeatvector"),
tf.keras.layers.LSTM(latent_dim, return_sequences=True, name="decode_lstm"),
tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(vocab_size, activation='softmax'), name="decoder_td"),
], name="decoder")
return model
# 定义模型
def build_model(input_shape, output_shape, vocab_size, latent_dim):
encoder_model = encoder(input_shape, vocab_size, latent_dim)
decoder_model = decoder(output_shape, vocab_size, latent_dim)
model = tf.keras.models.Sequential([encoder_model, decoder_model])
return model
```
阅读全文