def init_weights(self): initrange = 0.1 self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self,src): src = src.unsqueeze(2) if self.src_mask is None or self.src_mask.size(0) != len(src): device = src.device mask = self._generate_square_subsequent_mask(len(src)).to(device) self.src_mask = mask src = self.pos_encoder(src) #print('##src',src.shape,self.src_mask.shape) output_1 = self.transformer_encoder(src) #, self.src_mask) output = output_1[0, :, :] output=torch.sum(output,dim=0) # output = self.decoder(output_1[-1]).squeeze(1) return output def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask

时间: 2024-04-03 14:36:39 浏览: 112
这段代码看起来是一个基于Transformer的模型,主要包括了初始化权重和前向传播两个函数。在初始化权重的函数中,将decoder的bias设为0,权重采用均匀分布初始化。在前向传播的函数中,首先将输入的src张量增加一个维度,然后通过位置编码器对输入进行编码,接着将编码后的输入传入Transformer的encoder中进行编码,得到输出output_1。在这段代码中,未使用self.src_mask,因此可以考虑将其删除。最后,将output_1中的第一个元素作为输出,通过对第一个维度的求和来实现将输出从3D张量降为2D张量。
相关问题

def init_weights(self): initrange = 0.1 self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange)

这段代码是一个初始化权重的函数,主要包括对decoder的bias和weight进行初始化。首先将初始化范围设为0.1,然后将decoder的bias设为0。最后,对decoder的weight采用均匀分布初始化,范围为[-initrange, initrange]。这个初始化过程可以帮助模型更快、更稳定地收敛,提高模型的训练效果。

torch.nn.transformer进行文本分类

可以使用torch.nn.transformer来进行文本分类,具体流程如下: 1. 准备数据集,将训练数据和测试数据转化为tensor格式。 2. 构建Transformer模型,可以使用PyTorch提供的预训练模型,也可以自行构建模型。 3. 定义损失函数,常用的有交叉熵损失函数。 4. 定义优化器,常用的有Adam优化器。 5. 进行模型训练,使用训练数据对模型进行训练,并在测试数据上进行测试。 6. 对模型进行评估,可以使用准确率、F1分数等指标进行评估。 下面是一个简单的代码示例,用于实现基于Transformer的文本分类: ``` import torch import torch.nn as nn import torch.optim as optim from torchtext.datasets import IMDB from torchtext.data import Field, LabelField, BucketIterator # 将数据集转换为tensor格式 TEXT = Field(tokenize='spacy') LABEL = LabelField(dtype=torch.float) train_data, test_data = IMDB.splits(TEXT, LABEL) TEXT.build_vocab(train_data, max_size=25000) LABEL.build_vocab(train_data) train_iterator, test_iterator = BucketIterator.splits( (train_data, test_data), batch_size=64, device=torch.device('cuda')) # 定义Transformer模型 class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() from torch.nn import TransformerEncoder, TransformerEncoderLayer self.model_type = 'Transformer' self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, 1) self.init_weights() def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = output.mean(dim=0) output = self.decoder(output) return output.squeeze() # 定义损失函数和优化器 criterion = nn.BCEWithLogitsLoss() model = TransformerModel(len(TEXT.vocab), 512, 8, 2048, 6, dropout=0.5).to(device) optimizer = optim.Adam(model.parameters(), lr=0.0005) # 进行模型训练 def train(model, iterator, optimizer, criterion): model.train() epoch_loss = 0 for batch in iterator: optimizer.zero_grad() src = batch.text trg = batch.label src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device) output = model(src, src_mask) loss = criterion(output, trg) loss.backward() optimizer.step() epoch_loss += loss.item() return epoch_loss / len(iterator) # 在测试数据上进行测试 def evaluate(model, iterator, criterion): model.eval() epoch_loss = 0 with torch.no_grad(): for batch in iterator: src = batch.text trg = batch.label src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device) output = model(src, src_mask) loss = criterion(output, trg) epoch_loss += loss.item() return epoch_loss / len(iterator) N_EPOCHS = 10 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): train_loss = train(model, train_iterator, optimizer, criterion) valid_loss = evaluate(model, test_iterator, criterion) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'tut6-model.pt') print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Val. Loss: {valid_loss:.3f}') ``` 该示例中使用了IMDB数据集来进行文本分类,使用了PyTorch提供的Transformer模型,并使用Adam优化器进行模型训练。在进行模型训练时,使用了交叉熵损失函数来计算损失。最后,通过在测试数据上进行测试,评估了模型的性能。
阅读全文

相关推荐

最新推荐

recommend-type

白色大气风格的旅游酒店企业网站模板.zip

白色大气风格的旅游酒店企业网站模板.zip
recommend-type

python实现用户注册

python实现用户注册
recommend-type

【图像压缩】基于matlab GUI Haar小波变换图像压缩(含PSNR)【含Matlab源码 9979期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

(177354822)java小鸟游戏.zip

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

VB+access学生管理系统(论文+系统)(2024am).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。