Traceback (most recent call last): File "D:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3369, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-7-079848560b19>", line 2, in <cell line: 2> import torch.nn as nn File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torch\__init__.py", line 124, in <module> raise err OSError: [WinError 127] 找不到指定的程序。 Error loading "D:\Anaconda\lib\site-packages\torch\lib\c10_cuda.dll" or one of its dependencies.
时间: 2023-07-22 15:58:35 浏览: 684
这个错误是由于缺少`c10_cuda.dll`文件或其依赖项引起的。`c10_cuda.dll`是PyTorch库中的一个CUDA加速库。要解决这个问题,你可以尝试以下几个步骤:
1. 确保你已经正确地安装了PyTorch库。你可以使用以下命令来安装最新版本的PyTorch:
```
pip install torch torchvision
```
2. 检查你的CUDA安装是否正确。如果你使用的是NVIDIA GPU并且想要使用CUDA加速,你需要正确地安装并配置CUDA驱动程序和CUDA工具包。
3. 如果你没有使用CUDA,你可以尝试安装CPU版本的PyTorch,它不需要CUDA加速:
```
pip install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
```
4. 如果以上步骤都没有解决问题,可以尝试重新安装Anaconda或PyTorch,并确保按照官方文档提供的步骤进行操作。
如果问题仍然存在,请提供更多详细信息,以便我能够更好地帮助你解决问题。
相关问题
Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-3-de046003dae8>", line 4, in <module> model = torch.load('D://大乐透5.h5') File "D:\anaconda\lib\site-packages\torch\serialization.py", line 713, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\anaconda\lib\site-packages\torch\serialization.py", line 920, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'H'.
这个错误发生的原因是你正在尝试使用 PyTorch 中的 `torch.load()` 函数来加载一个 Keras 模型文件。Keras 模型文件通常是以 ".h5" 为扩展名,而 PyTorch 使用的默认扩展名是 ".pth" 或 ".pt"。
如果你要加载 Keras 模型文件,应该使用 Keras 中提供的函数,例如 `keras.models.load_model()`。示例代码如下:
```python
import keras
# 加载 Keras 模型
model = keras.models.load_model('D://大乐透5.h5')
# 查看模型结构
print(model.summary())
# 修改模型结构
model.layers.pop() # 删除最后一层
model.add(keras.layers.Dense(10, activation='softmax')) # 添加一个新的输出层
# 保存修改后的模型
model.save('modified_model.h5')
```
这里的代码假设你已经有一个名为 `D://大乐透5.h5` 的 Keras 模型文件。你可以使用 `model.summary()` 函数查看模型结构。这里的代码将删除模型的最后一层,并添加一个新的输出层,最后将修改后的模型保存为 `modified_model.h5`。
Traceback (most recent call last): File "D:\ANACONDA3\lib\site-packages\IPython\core\interactiveshell.py", line 3505, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-20-10043336366a>", line 52, in <module> model.fit(train_data, train_labels, epochs=10, batch_size=32) File "D:\ANACONDA3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\CXY\AppData\Local\Temp\__autograph_generated_filej56unrey.py", line 15, in tf__train_function retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) ValueError: in user code: File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1160, in train_function * return step_function(self, iterator) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1146, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1135, in run_step ** outputs = model.train_step(data) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 993, in train_step y_pred = self(x, training=True) File "D:\ANACONDA3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\ANACONDA3\lib\site-packages\keras\engine\input_spec.py", line 295, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "sequential_3" is incompatible with the layer: expected shape=(None, 32, 32, 3), found shape=(None, 80, 160, 3)
这个错误是由于在模型的输入层中指定的形状与实际提供的数据形状不匹配导致的模型的输入层期望是一个形状为(None, 32, 32, 3)的张量,但实际提供的数据形状是(None, 80, 160, 3)。
你可以尝试调整输入数据的形状,使其与模型的期望输入形状匹配。或者,你可以修改模型的输入层,使其适应提供的数据形状。这取决于你的具体需求和数据。
如果你需要进一步的帮助,请提供更多关于你的模型和数据的信息,我将尽力提供更准确的解决方案。
阅读全文