import pandas as pd from sklearn.linear_model import LinearRegression # 读取数据表 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 将数据表分为X和y两部分,其中X为前三列数据,y为最后一列数据 X = data.iloc[:, :4] y = data.iloc[-1, :] # 拟合线性回归模型 model = LinearRegression() model.fit(X, y) # 预测每一列的预测值 y_pred = model.predict(X) # 输出每一列的预测值 print(y_pred)出现Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-1c2c07b8ba7f>", line 1, in <module> runfile('D:\\Users\\Admin\\PycharmProjects\\pythonProject2\\线性预测8.py', wdir='D:\\Users\\Admin\\PycharmProjects\\pythonProject2') File "D:\PyCharm 2023.1.1\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\PyCharm 2023.1.1\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "D:\Users\Admin\PycharmProjects\pythonProject2\线性预测8.py", line 13, in <module> model.fit(X, y) File "D:\anaconda\lib\site-packages\sklearn\linear_model\_base.py", line 648, in fit X, y = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 565, in _validate_data X, y = check_X_y(X, y, **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 1124, in check_X_y check_consistent_length(X, y) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 397, in check_consistent_length raise ValueError( ValueError: Found input variables with inconsistent numbers of samples: [1258, 4]错误
时间: 2023-06-30 18:15:51 浏览: 217
出现这个错误是因为你的 `y` 只有一行数据,而 `X` 有多行数据,导致无法进行线性回归模型的拟合。你应该将 `y` 改为一个一维数组或者一个DataFrame,例如:
```python
X = data.iloc[:, :4]
y = data.iloc[-1, :].values.reshape(-1, 1) # 将y转换成一个二维数组
model = LinearRegression()
model.fit(X, y)
y_pred = model.predict(X)
print(y_pred)
```
这样就可以避免这个错误了。请注意,我们将 `y` 转换成了一个二维数组,这是因为 `sklearn` 库中的线性回归模型要求 `y` 必须是一个二维数组。如果 `y` 是一个一维数组,需要使用 `reshape` 方法将其转换成一个二维数组。
相关问题
import pandas as pd from sklearn.linear_model import LinearRegression # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 把数据分成输入和输出 X = data.iloc[:, 0:5].values y = data.iloc[:, 0:5].values # 创建线性回归模型 model = LinearRegression() # 使用模型进行预测 y_pred = model.predict(X) # 拟合模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X)修改错误
在这段代码中,`X` 与 `y` 的赋值存在错误,应该将 `y` 的赋值改为 `data.iloc[:, 5].values`,即选取 Excel 文件中第 6 列数据作为输出。同时,在进行预测之前应先进行模型拟合,因此应该将 `model.fit(X, y)` 的代码移到 `model.predict(X)` 之前。修改后的代码如下:
```
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取 Excel 文件
data = pd.read_excel('D://数据1.xlsx', sheet_name='4')
# 把数据分成输入和输出
X = data.iloc[:, 0:5].values
y = data.iloc[:, 5].values
# 创建线性回归模型
model = LinearRegression()
# 拟合模型
model.fit(X, y)
# 使用模型进行预测
y_pred = model.predict(X)
# 打印预测结果
print(y_pred)
```
import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import LinearRegression# 读取数据data = pd.read_csv('data.csv')# 分离自变量和因变量X = data.iloc[:, :-1].valuesy = data.iloc[:, -1].values# 数据集划分为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 使用多项式回归模型poly_reg = PolynomialFeatures(degree=2)X_poly = poly_reg.fit_transform(X_train)# 训练模型regressor = LinearRegression()regressor.fit(X_poly, y_train)# 预测结果y_pred = regressor.predict(poly_reg.transform(X_test))最后如何绘制图
可以使用Matplotlib库来绘制散点图和回归线。以下是一个简单的示例代码:
```
import matplotlib.pyplot as plt
# 绘制训练集散点图
plt.scatter(X_train, y_train, color='blue')
# 绘制回归线
x = np.linspace(X_train.min(), X_train.max(), 100)
y = regressor.predict(poly_reg.fit_transform(x.reshape(-1, 1)))
plt.plot(x, y, color='red')
# 设置图形标题和坐标轴标签
plt.title('Polynomial Regression')
plt.xlabel('X')
plt.ylabel('Y')
# 显示图形
plt.show()
```
注意,这只是一个示例代码,具体绘图方式可以根据实际需求进行调整。
阅读全文