import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 数据加载和预处理 train_data = pd.read_csv('D:/wy/train.csv') test_data = pd.read_csv('D:/wy/test.csv') # 特征选择和处理 features = ['uid', 'iid'] target = 'score' X_train = train_data[features] y_train = train_data[target] X_test = test_data[features] # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # 模型训练 model = LogisticRegression() model.fit(X_train, y_train) # 模型评估 y_val_pred = model.predict(X_val) accuracy = accuracy_score(y_val, y_val_pred) print("Validation Accuracy:", accuracy) # 预测和推荐 y_test_pred = model.predict(X_test) test_data['score'] = y_test_pred recommended_movies = test_data.sort_values(by='score', ascending=False) # 结果保存 recommended_movies[['uid', 'iid', 'score']].to_csv('D:/forecast_result.csv', index=False)
时间: 2023-12-24 22:09:27 浏览: 175
这段代码使用了Pandas和Scikit-learn库来构建一个基于逻辑回归的电影推荐系统。首先,它读取训练和测试数据,然后选择了一些特征。接着,训练数据被划分为训练集和验证集,用于训练和评估模型。在这里,模型采用了逻辑回归算法,并使用训练数据进行了拟合。最后,模型被用于预测测试数据并生成推荐结果。推荐结果被保存在一个CSV文件中。
相关问题
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics import matplotlib.pyplot as plt
这段代码导入了 pandas、numpy、scikit-learn 和 matplotlib.pyplot 库中的一些常用模块和函数。
import pandas as pd
导入了 pandas 库,并将其重命名为 pd,用于数据处理和分析。import numpy as np
导入了 numpy 库,并将其重命名为 np,用于数值计算和数组操作。from sklearn.model_selection import train_test_split
导入了 scikit-learn 库中的 train_test_split 函数,用于将数据集拆分为训练集和测试集。from sklearn.linear_model import LogisticRegression
导入了 scikit-learn 库中的逻辑回归模型(LogisticRegression),用于进行分类任务。from sklearn import metrics
导入了 scikit-learn 库中的 metrics 模块,用于评估模型性能。import matplotlib.pyplot as plt
导入了 matplotlib 库中的 pyplot 模块,并将其重命名为 plt,用于绘制数据可视化图形。
这段代码的目的是导入所需的库和模块,以便在后续的代码中使用它们进行数据处理、模型训练和评估以及结果可视化等操作。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix
这段代码是在 Python 中导入了一些常用的机器学习库和模块,包括 pandas、numpy、matplotlib、sklearn 等。其中:
- pandas 是 Python 中常用的数据分析库,可以用来读取和处理数据;
- numpy 是 Python 中常用的科学计算库,提供了数组、矩阵等数据结构和各种数学函数;
- matplotlib 是 Python 中常用的数据可视化库,可以用来绘制各种图表;
- sklearn 是 Python 中常用的机器学习库,提供了许多常用的机器学习算法和工具,比如数据预处理、模型选择、模型评估等。
这段代码中还导入了不同的机器学习算法,包括逻辑回归、决策树、K近邻和支持向量机等。最后还导入了一些评估指标,比如分类报告和混淆矩阵。
相关推荐















