优化这段代码# import modules 导入模块 from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random

时间: 2023-08-18 19:05:30 浏览: 140
你可以对这段代码进行如下优化: ```python import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, StratifiedKFold, GridSearchCV, LeaveOneOut, cross_val_predict, KFold from sklearn.decomposition import PCA from sklearn.svm import SVC, LinearSVC from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, StackingClassifier from sklearn.metrics import roc_auc_score # 导入模块 # 设置随机种子 random.seed(42) np.random.seed(42) # 其他代码... ``` 这样做的优点是将导入的模块进行整理和分类,提高了代码的可读性。同时,设置了随机种子,保证了代码的可复现性。你可以根据需要添加其他的代码或模块。

相关推荐

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

最新推荐

recommend-type

基于当前信息(截至2024年7月)的SpringCloud配置概览

基于当前信息(截至2024年7月)的SpringCloud配置概览
recommend-type

毕业设计javajsp校园二手商品交易(jsp+sqlserver)-qkrp源码含文档工具包

毕业设计javajsp校园二手商品交易(jsp+sqlserver)-qkrp源码含文档工具包 页面是jsp,数据库sqlserver,jdk1.8,开发工具用ecplise、myecplise、sts、idea都可以 本系统以JSP为主要制作工具,实现了用户注册、登陆、商品发布,商品浏览/查询、对商品的购买使用购物车以及用户订单生成等功能,从而实现了一套比较完善的网上二手商品交易平台。系统的前台主要是客户浏览和操作,系统的后台只有管理员可以进行操作主要实现了客户管理,公告管理,订单管理等。 包含:源码、数据库脚本、论文、环境工具包、相同框架项目的安装教程(在说明文档中)
recommend-type

SDN权威指南:深入解析软件定义网络与OpenFlow

"SDN: Software Defined Networks 由 Thomas D. Nadeau 和 Ken Gray 编著,这是一本深入剖析SDN技术的权威指南。本书详细介绍了软件定义网络(SDN)的概念、原理以及OpenFlow等相关技术,是计算机教材和IT专业人员的重要参考资料。" 在SDN(Software Defined Networking)这一领域,它代表了网络架构的一次重大革新,将控制平面与数据平面分离,从而实现了网络的灵活配置和集中管理。这本书由Thomas D. Nadeau和Ken Gray共同撰写,他们都是SDN领域的专家,提供了对SDN的深度解析。 书中主要知识点包括: 1. **SDN的基本概念**:解释了SDN的核心理念,即通过将网络控制逻辑从底层硬件中抽象出来,集中到一个独立的控制器,使得网络可以像软件一样被编程和管理。 2. **OpenFlow协议**:OpenFlow是SDN中最著名的数据平面接口,它允许控制器直接与交换机通信,定义数据包的转发路径。书中详细阐述了OpenFlow的工作机制、协议报文结构和如何实现流表的建立与更新。 3. **SDN架构**:描述了典型的SDN架构,包括网络设备(如交换机、路由器)、控制器以及应用层的构成,分析了各部分的角色和交互方式。 4. **SDN的优势**:讨论了SDN带来的好处,如提高网络的灵活性、可扩展性,简化网络管理,以及支持创新的网络服务和策略。 5. **安全性与挑战**:探讨了SDN在安全方面可能面临的问题,如集中式控制器的安全隐患、数据平面的攻击面扩大等,并提出了相应的解决方案。 6. **SDN的应用场景**:列举了SDN在数据中心网络、云计算、虚拟化环境、广域网优化、网络安全等领域中的实际应用案例,展示了SDN技术的广泛影响力。 7. **控制器平台与框架**:介绍了一些主流的SDN控制器,如OpenDaylight、ONOS等,以及相关的开发框架和工具,帮助读者理解如何构建和部署SDN解决方案。 8. **未来发展趋势**:分析了SDN技术的未来发展方向,包括NFV(网络功能虚拟化)、边缘计算、5G网络等,预示了SDN在下一代网络中的关键作用。 本书不仅适合网络工程师、研究人员和学者深入学习SDN,也适合作为高校相关专业的教材,通过理论与实践相结合的方式,帮助读者掌握SDN技术并应用于实际网络环境中。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能

![PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能](https://st0.dancf.com/market-operations/market/side/1701682825707.jpg) # 1. PHP图片上传扩展介绍 PHP提供了多种图片上传扩展,允许开发者轻松地将图片上传到服务器。这些扩展包括: - **GD库:**一个用于处理图像的标准PHP扩展,提供基本的图片操作功能,如裁剪、缩放和添加水印。 - **ImageMagick:**一个功能强大的命令行工具,可用于执行更高级的图像处理任务,如复杂的裁剪、颜色校正和格式转换。 # 2. PHP图片裁剪技术 ### 2
recommend-type

sentinel 热点限流nacos配置

Sentinel 是阿里巴巴开源的一个流量控制框架,它支持热点限流功能。要通过 Nacos 配置 Sentinel 的热点限流,首先需要在 Nacos 中管理 Sentinel 相关的服务发现配置。 1. **创建Nacos配置**: - 登录到 Nacos 控制台,进入 `配置` 或者 `Config Center` 页面。 - 创建一个新的数据源,用于存放 Sentinel 的配置文件,比如命名空间为 `sentinel-config`。 2. **配置热点规则**: - 编辑一个名为 `hot_rule.yaml` 或类似名称的配置文件,添加如下内容: `
recommend-type

HP9000服务器宝典:从入门到进阶

"HP9000非常宝典.pdf" 这篇文档是关于HP9000服务器的详尽指南,涵盖了从基础概念到高级操作的多个方面。以下是文档中提到的一些关键知识点: 1. HP9000服务器:这是惠普公司生产的一系列高性能、可靠性高的企业级服务器,主要面向大型企业和组织。 2. 服务器产品分类:服务器通常按照功能、性能和规模进行分类,如入门级、部门级、企业级等,HP9000可能包括其中的不同型号。 3. CPU:服务器的核心组件,文档中可能介绍了HP9000所使用的处理器类型及其特性。 4. 配置相关信息:这部分内容涉及如何配置服务器硬件,如内存、硬盘、网络接口等,以及如何检查系统配置信息。 5. 维护相关信息:包括如何进行日常维护,如监控系统状态、错误日志分析、硬件更换等。 6. ModelString、SWID和ssconfig:这些是HP服务器特有的标识符和工具,用于识别和管理硬件及软件。 7. 操作系统:文档可能详细介绍了支持HP9000的多种操作系统,如HP-UX、Linux等,并可能涉及启动流程。 8. 启动过程:从开机到操作系统加载的整个流程,包括PDC(Processor Dependent Code)、ISL、LoadKernel、Startsubsystem、初始化脚本如/etc/init、/sbin/bcheckrc、/etc/rc.config、/sbin/rc等。 9. Init进程问题:讨论了当命令反复启动过快时,系统如何处理,如"Init: Command is Respawning Too Rapidly"。 10. 登录与权限:描述了用户登录系统的过程,以及权限管理和认证。 11. Patches和应用软件安装:讲述了如何列出、安装和验证补丁,以及补丁评级和打包安装方法。还提到了补丁光盘和标准补丁包-SupportPlus。 12. 系统核心(Kernel):核心是操作系统的核心部分,文档可能讲解了其作用、如何手工编译生成新的核心。 13. LVM (Logical Volume Manager):一种磁盘管理技术,允许动态扩展和管理磁盘空间。文档给出了创建镜像、LVM磁盘结构、pvcreate、mkboot、vgcfgbackup/vgcfgrestore、vgchange等操作的实例。 14. 集群和高可用性:如MC/ServiceGuard,介绍了节点(node)、共享存储、心跳线、备份网卡和锁盘的概念,以及如何实现高可用性。 15. CrashDump与HPMC:CrashDump是系统崩溃时保存的内存转储,用于故障分析。HPMC(Machine Console)提供了远程监控和管理服务器的功能。文档介绍了如何配置DumpDevice、保存和分析CrashDump,以及收集和分析HPMC数据。 此文档对于理解和管理HP9000服务器系统具有极高的参考价值,无论是对于初学者还是经验丰富的管理员,都能从中获得宝贵的信息。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程

![PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程](https://embed-ssl.wistia.com/deliveries/41ccfbce47f61e2883c01ed91797198b.webp?image_crop_resized=960x540) # 1. PHP图片上传概述** PHP图片上传是一种将图片文件从客户端传输到服务器的过程。它涉及多个步骤,包括: - **客户端准备:**用户选择要上传的图片文件。 - **网络传输:**图片文件通过HTTP请求发送到服务器。 - **服务器处理:**服务器接收文件,将其保存到指定位置并执行任何必要的处理(例如,验证
recommend-type

在labelimg里删改了标签后,labelimg闪退怎么解决

LabelImg是一款用于图像标注的工具,如果在修改标签后遇到闪退的问题,可以尝试以下几个步骤来解决问题: 1. **更新到最新版本**:检查LabelImg是否有新版本发布,有时软件的bug可能已经在后续更新中修复。 2. **清除缓存和数据**:关闭LabelImg后,删除其安装目录下的.cache文件夹,这通常位于应用程序数据路径下,清理这部分可能导致的配置冲突。 3. **检查文件损坏**:确保你正在处理的图像文件没有损坏,有时候错误的文件可能会导致程序崩溃。 4. **错误日志排查**:查找LabelImg安装目录下的logs文件夹,查看是否存在异常的日志信息,可以帮助定位问