解释一下这段代码:import pandas as pd from sklearn.decomposition import PCA # 读取数据集 data = pd.read_csv('D:/Desktop/diabetes.csv') # 获取特征列 features = data.columns[:-1] # 创建PCA对象,设置降维后的维度为8 pca = PCA(n_components=8) # 对数据进行降维操作 reduced_data = pca.fit_transform(data[features]) # 计算每个特征的方差贡献率 variance_ratio = pca.explained_variance_ratio_ # 输出每个特征的方差贡献率 for i, feature in enumerate(features): print('{}: {:.2f}%'.format(feature, variance_ratio[i]*100))
时间: 2024-03-05 17:47:21 浏览: 91
PCA.rar_PCA python实现_Python PCA_pca Python_pca协方差_矩阵 python
5星 · 资源好评率100%
这段代码主要是使用 PCA(Principal Component Analysis,主成分分析)算法对数据进行降维操作,并计算每个特征的方差贡献率。具体解释如下:
- 首先通过 pandas 库的 read_csv 方法读取 diabetes.csv 文件中的数据,并获取特征列。
- 然后创建一个 PCA 对象,将降维后的维度设置为 8。
- 接着,对数据进行降维操作,得到降维后的数据 reduced_data。
- 最后,计算每个特征的方差贡献率,即每个特征对降维后的数据解释了多少方差。这个信息可以通过 PCA 对象的 explained_variance_ratio_ 属性得到。代码中使用了一个循环,输出每个特征的方差贡献率。
需要注意的是,PCA 算法通常会将原始数据中的所有特征都用于降维操作,因此在代码中,我们需要将数据集中的标签列删除,只保留特征列。
阅读全文