import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom torch.utils.data import Dataset, DataLoaderfrom torch import nn, optimfrom sklearn.decomposition import PCAimport chardetrawdata = open('test.csv', 'rb').read() # 加载新的测试数据result = chardet.detect(rawdata)encoding = result['encoding']data = pd.read_csv('test.csv', encoding=encoding) # 读取新的测试数据print(data.columns)的运算过程
时间: 2024-03-31 10:38:27 浏览: 202
这段代码首先使用了 chardet 库来自动检测新的测试数据文件 test.csv 的编码格式,并将其存储在 encoding 变量中。然后使用 Pandas 库中的 read_csv 函数读取 test.csv 文件,并将读取结果存储在 data 变量中。最后打印出 data 中的列名,以便于观察数据的特征。该代码还导入了 PyTorch、NumPy、Matplotlib 和 sklearn 库。
相关问题
import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom torch.utils.data import Dataset, DataLoaderfrom torch import nn, optimfrom sklearn.decomposition import PCA运算过程
以上代码段中没有明显的运算过程,只是导入了一些Python库和模块。在这里简单介绍一下这些库和模块的作用:
- torch:是一个开源的机器学习库,用于构建神经网络和其他机器学习模型。
- pandas:是一个用于数据处理和分析的Python库,支持导入和导出各种数据格式。
- numpy:是一个用于科学计算的Python库,支持大量的数值运算。
- matplotlib:是一个用于绘制图形的Python库,支持各种类型的图形绘制。
- Dataset和DataLoader:是PyTorch中用于加载和处理数据的类和模块。
- nn:是PyTorch中用于构建神经网络模型的类和模块。
- optim:是PyTorch中用于优化神经网络模型的类和模块。
- PCA:是一个用于数据降维的算法,可以通过sklearn库来实现。
在实际的机器学习代码中,这些库和模块通常会结合起来使用,进行数据处理、特征提取、模型构建和训练等各种操作。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文