编写pytorch代码,定义LSTMAttention模型,定义一个FA_CPSO优化算法,用FA_CPSO算法有优化模型中神经元个数、dropout比率、batch_size、学习率等超参数,将优化好的超参数传递给模型,在特征训练集X_train.csv和标签训练集y_train.csv上训练模型,将最优的参数设置给模型,在特征测试集X_test.csv和标签测试集y_test.csv上测试模型,进一步优化模型,将优化后的参数设置给模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差,在预测集上进行预测,设定标签数据最大值的85%为警戒线,绘制预测集的实际值到达的时间和预测值到达的时间

时间: 2024-03-22 12:42:00 浏览: 66
RAR

RCAN-pytorch.rar_RCAN_RCAN 代码_RCAN模型_pytorch_super-reso

star5星 · 资源好评率100%
好的,我了解了你的要求。首先,需要安装pytorch和pandas库。 以下是代码实现: ```python import torch import torch.nn as nn import pandas as pd import numpy as np from scipy.stats import uniform from sko.PSO import PSO # 定义LSTMAttention模型 class LSTMAttention(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers, dropout): super(LSTMAttention, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True) self.dropout = nn.Dropout(dropout) self.fc1 = nn.Linear(hidden_size * 2, output_size) self.softmax = nn.Softmax(dim=1) def forward(self, x): h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x, (h0, c0)) out = self.dropout(out) out = self.fc1(out[:, -1, :]) out = self.softmax(out) return out # 加载数据 X_train = pd.read_csv('X_train.csv') y_train = pd.read_csv('y_train.csv') X_test = pd.read_csv('X_test.csv') y_test = pd.read_csv('y_test.csv') # 转换数据格式 X_train = torch.from_numpy(X_train.values).float() y_train = torch.from_numpy(y_train.values).long().squeeze() X_test = torch.from_numpy(X_test.values).float() y_test = torch.from_numpy(y_test.values).long().squeeze() # 定义超参数空间 dim = 4 lb = [16, 0.1, 64, 0.0001] ub = [256, 0.5, 256, 0.1] pso_bound = np.array([lb, ub]) # 定义FA_CPSO优化算法 class FA_CPSO(PSO): def __init__(self, func, lb, ub, dimension, size_pop=50, max_iter=300, w=0.8, c1=2, c2=2, c3=2, p=0.5): super().__init__(func, lb, ub, dimension, size_pop, max_iter, w, c1, c2, p) self.c3 = c3 # FA_CPSO新增参数 self.S = np.zeros((self.size_pop, self.dimension)) # 储存每个个体的历代最优位置 self.F = np.zeros(self.size_pop) # 储存每个个体的当前适应度值 self.Fbest = np.zeros(self.max_iter + 1) # 储存每次迭代的最优适应度值 self.Fbest[0] = self.gbest_y self.S = self.X.copy() def evolve(self): self.F = self.cal_fitness(self.X) self.Fbest[self.gbest_iter] = self.gbest_y for i in range(self.size_pop): if uniform.rvs() < self.p: # 个体位置更新 self.X[i] = self.S[i] + self.c3 * (self.gbest - self.X[i]) + self.c1 * \ (self.pbest[i] - self.X[i]) + self.c2 * (self.pbest[np.random.choice(self.neighbor[i])] - self.X[i]) else: # 个体位置更新 self.X[i] = self.S[i] + self.c1 * (self.pbest[i] - self.X[i]) + self.c2 * (self.pbest[np.random.choice(self.neighbor[i])] - self.X[i]) # 边界处理 self.X[i] = np.clip(self.X[i], self.lb, self.ub) # 适应度值更新 self.F[i] = self.func(self.X[i]) # 个体历代最优位置更新 if self.F[i] < self.func(self.S[i]): self.S[i] = self.X[i] # 全局最优位置更新 self.gbest = self.S[self.F.argmin()] self.gbest_y = self.F.min() # 定义优化目标函数 def objective_function(para): hidden_size, dropout, batch_size, learning_rate = para model = LSTMAttention(10, hidden_size, 2, 2, dropout).to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) train_dataset = torch.utils.data.TensorDataset(X_train, y_train) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) for epoch in range(100): for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() test_dataset = torch.utils.data.TensorDataset(X_test, y_test) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=len(test_dataset)) for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) pred = torch.argmax(outputs, dim=1) test_loss = criterion(outputs, labels) rmse = torch.sqrt(torch.mean((pred - labels) ** 2)) return test_loss.item() + rmse.item() # 运行FA_CPSO算法进行超参数优化 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') fa_cpso = FA_CPSO(objective_function, lb, ub, dim, size_pop=50, max_iter=100) fa_cpso.run() # 输出最优超参数 best_hidden_size, best_dropout, best_batch_size, best_learning_rate = fa_cpso.gbest # 使用最优超参数训练模型 model = LSTMAttention(10, best_hidden_size, 2, 2, best_dropout).to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=best_learning_rate) train_dataset = torch.utils.data.TensorDataset(X_train, y_train) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=best_batch_size, shuffle=True) for epoch in range(100): for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 在测试集上进行预测 test_dataset = torch.utils.data.TensorDataset(X_test, y_test) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=len(test_dataset)) for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) pred = torch.argmax(outputs, dim=1) test_loss = criterion(outputs, labels) test_rmse = torch.sqrt(torch.mean((pred - labels) ** 2)) # 输出测试损失和测试集的均方根误差 print('Test loss: {:.4f}, Test RMSE: {:.4f}'.format(test_loss.item(), test_rmse.item())) # 绘制测试集的预测值和实际值 import matplotlib.pyplot as plt plt.plot(pred.cpu().numpy(), label='Predict') plt.plot(labels.cpu().numpy(), label='Actual') plt.legend() plt.show() # 在预测集上进行预测 X_pred = torch.from_numpy(pd.read_csv('X_pred.csv').values).float().to(device) outputs = model(X_pred) pred = torch.argmax(outputs, dim=1) # 计算预测值到达警戒线的时间和实际值到达警戒线的时间 threshold = y_train.max() * 0.85 pred_time = np.argmax(pred.cpu().numpy() >= threshold) actual_time = np.argmax(y_test.cpu().numpy() >= threshold) # 绘制预测集的实际值到达的时间和预测值到达的时间 plt.axvline(x=pred_time, color='r', linestyle='--') plt.axvline(x=actual_time, color='g', linestyle='--') plt.plot(pred.cpu().numpy(), label='Predict') plt.plot(y_test.cpu().numpy(), label='Actual') plt.legend() plt.show() ``` 请注意,这只是一个代码示例,可能需要根据数据集的特点进行调整和修改。
阅读全文

相关推荐

最新推荐

recommend-type

PyTorch使用cpu加载模型运算方式

首先,当你从磁盘加载一个已经训练好的模型时,通常会使用`torch.load()`函数。这个函数可以从`.pt`或`.pth`文件中读取模型的状态字典(state_dict),以及可能的优化器状态。在有GPU环境的情况下,模型通常被保存在...
recommend-type

白色大气风格的旅游酒店企业网站模板.zip

白色大气风格的旅游酒店企业网站模板.zip
recommend-type

python实现用户注册

python实现用户注册
recommend-type

【图像压缩】基于matlab GUI Haar小波变换图像压缩(含PSNR)【含Matlab源码 9979期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

(177354822)java小鸟游戏.zip

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。