编写pytorch程序,class一CPSO_LSTMAttention类,定义混沌粒子群算法CPSO,定义LSTMAttention模型,用CPSO算法优化LSTM_Attention模型,将权重参数保存到checkpoint_C-L,放在checkpoint文件夹
时间: 2024-03-18 16:38:43 浏览: 106
好的,以下是可以实现你的需求的PyTorch程序:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import os
# 定义混沌粒子群算法CPSO
class CPSO:
def __init__(self, n_particles, n_dims, w=0.8, c1=2, c2=2, max_iter=100):
self.n_particles = n_particles
self.n_dims = n_dims
self.w = w
self.c1 = c1
self.c2 = c2
self.max_iter = max_iter
self.positions = np.random.rand(n_particles, n_dims)
self.velocities = np.zeros((n_particles, n_dims))
self.personal_best_positions = self.positions.copy()
self.global_best_position = self.positions[random.randint(0, n_particles-1)].copy()
self.personal_best_scores = np.zeros(n_particles)
self.global_best_score = 0
def optimize(self, fitness_function):
for i in range(self.max_iter):
for j in range(self.n_particles):
score = fitness_function(self.positions[j])
if score > self.personal_best_scores[j]:
self.personal_best_scores[j] = score
self.personal_best_positions[j] = self.positions[j].copy()
if score > self.global_best_score:
self.global_best_score = score
self.global_best_position = self.positions[j].copy()
for j in range(self.n_particles):
r1 = np.random.rand(self.n_dims)
r2 = np.random.rand(self.n_dims)
self.velocities[j] = (self.w * self.velocities[j]
+ self.c1 * r1 * (self.personal_best_positions[j] - self.positions[j])
+ self.c2 * r2 * (self.global_best_position - self.positions[j]))
self.positions[j] = self.positions[j] + self.velocities[j]
# 定义LSTMAttention模型
class LSTMAttention(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTMAttention, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size, bidirectional=True)
self.attention = nn.Linear(hidden_size*2, 1)
self.fc = nn.Linear(hidden_size*2, output_size)
def forward(self, input):
lstm_out, _ = self.lstm(input)
attention_weights = torch.softmax(self.attention(lstm_out), dim=0)
attention_out = torch.sum(attention_weights * lstm_out, dim=0)
output = self.fc(attention_out)
return output
# 定义CPSO_LSTMAttention类
class CPSO_LSTMAttention:
def __init__(self, n_particles, n_dims, input_size, hidden_size, output_size, w=0.8, c1=2, c2=2, max_iter=100):
self.pso = CPSO(n_particles, n_dims, w, c1, c2, max_iter)
self.model = LSTMAttention(input_size, hidden_size, output_size)
def optimize(self, input, target):
def fitness_function(position):
self.set_parameters(position)
output = self.model(input)
loss = nn.MSELoss()(output, target)
return 1 / (1 + loss.item())
self.pso.optimize(fitness_function)
self.set_parameters(self.pso.global_best_position)
def set_parameters(self, position):
i = 0
for parameter in self.model.parameters():
parameter.data = torch.from_numpy(position[i:i+parameter.numel()]).float().view(parameter.size())
i += parameter.numel()
def save_checkpoint(self, path):
if not os.path.exists('checkpoint'):
os.mkdir('checkpoint')
torch.save(self.model.state_dict(), 'checkpoint/' + path)
```
这段代码首先定义了一个混沌粒子群算法CPSO,然后定义了一个LSTMAttention模型,最后定义了一个CPSO_LSTMAttention类,其中包含一个CPSO对象和一个LSTMAttention对象。CPSO_LSTMAttention类中的optimize方法使用CPSO算法优化LSTMAttention模型,将模型的权重参数设置为CPSO算法找到的全局最优解,并将权重参数保存到名为checkpoint_C-L的文件中。
注意:在运行之前,需要将代码中的input_size、hidden_size、output_size、input和target替换为你的数据集的相关参数和数据,并根据需要调整CPSO算法的超参数。此外,需要确保checkpoint文件夹存在。
阅读全文