编写pytorch代码,在CPSO优化算法优化LSTMAttention模型过程中,用训练集的预测误差当作每个粒子的适应度值,用于LSTMAttention模型评估粒子当前位置的优劣程度,选择最优的粒子作为当前的全局最优解,以及每个粒子自身的局部最优解,根据全局最优解和局部最优解,更新每个粒子的速度和位置,以及更新模型参数。最后,根据收敛条件是否满足,决定是否继续迭代,如果达到预设的最大迭代次数或误差已经足够小,则停止迭代,并返回最优的LSTM模型参数。
时间: 2024-03-25 09:39:49 浏览: 124
以下是一个简单的用Pytorch实现CPSO优化LSTMAttention模型的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import random
# 定义LSTMAttention模型
class LSTMAttention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMAttention, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.linear = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h, _ = self.lstm(x)
h = torch.tanh(h)
alpha = torch.softmax(self.linear(h), dim=1)
c = torch.bmm(alpha.permute(0, 2, 1), h).squeeze(1)
return c
# 定义适应度函数
def fitness_func(model, trainX, trainY):
model.eval()
with torch.no_grad():
preds = model(trainX)
loss = nn.MSELoss()(preds, trainY)
return loss.item()
# 定义CPSO算法的类
class CPSO:
def __init__(self, input_dim, hidden_dim, output_dim, n, max_iter, w, c1, c2, trainX, trainY):
self.dim = input_dim*hidden_dim + hidden_dim**2 + hidden_dim*output_dim # 粒子的维度
self.n = n # 粒子数
self.max_iter = max_iter # 最大迭代次数
self.w = w # 惯性权重
self.c1 = c1 # 学习因子1
self.c2 = c2 # 学习因子2
self.x = Variable(torch.rand(n, self.dim), requires_grad=True) # 粒子的位置
self.v = Variable(torch.rand(n, self.dim), requires_grad=True) # 粒子的速度
self.pbest = self.x.clone() # 个体最优解
self.gbest = None # 全局最优解
self.pbest_fit = fitness_func(self.get_model(), trainX, trainY) # 个体最优解的适应度值
self.gbest_fit = None # 全局最优解的适应度值
self.trainX = trainX
self.trainY = trainY
# 获取当前粒子的模型参数
def get_model(self):
input_dim = 4
hidden_dim = 8
output_dim = 1
start = 0
end = input_dim*hidden_dim
W_xh = self.x[:, start:end].view(self.n, input_dim, hidden_dim)
start = end
end += hidden_dim**2
W_hh = self.x[:, start:end].view(self.n, hidden_dim, hidden_dim)
start = end
end += hidden_dim*output_dim
W_hy = self.x[:, start:end].view(self.n, hidden_dim, output_dim)
models = []
for i in range(self.n):
model = LSTMAttention(input_dim, hidden_dim, output_dim)
model.lstm.weight_ih_l0.data = W_xh[i]
model.lstm.weight_hh_l0.data = W_hh[i]
model.linear.weight.data = W_hy[i]
models.append(model)
return models
# CPSO算法的优化过程
def optimize(self):
for i in range(self.max_iter):
r1 = Variable(torch.rand(self.n, self.dim), requires_grad=True)
r2 = Variable(torch.rand(self.n, self.dim), requires_grad=True)
self.v = self.w*self.v + self.c1*r1*(self.pbest-self.x) + self.c2*r2*(self.gbest-self.x)
self.x = self.x + self.v
fit = []
models = self.get_model()
for j in range(self.n):
loss = fitness_func(models[j], self.trainX, self.trainY)
fit.append(loss)
if loss < self.pbest_fit[j]:
self.pbest[j] = self.x[j]
self.pbest_fit[j] = loss
if self.gbest_fit is None or min(fit) < self.gbest_fit:
self.gbest, self.gbest_fit = self.x[fit.index(min(fit))], min(fit)
for j in range(self.n):
if fit[j] >= self.pbest_fit[j]:
continue
start = 0
end = input_dim*hidden_dim
W_xh = self.x[j, start:end].view(input_dim, hidden_dim)
start = end
end += hidden_dim**2
W_hh = self.x[j, start:end].view(hidden_dim, hidden_dim)
start = end
end += hidden_dim*output_dim
W_hy = self.x[j, start:end].view(hidden_dim, output_dim)
model = LSTMAttention(input_dim, hidden_dim, output_dim)
model.lstm.weight_ih_l0.data = W_xh
model.lstm.weight_hh_l0.data = W_hh
model.linear.weight.data = W_hy
optimizer = optim.Adam(model.parameters(), lr=0.01)
for k in range(100):
optimizer.zero_grad()
preds = model(trainX)
loss = nn.MSELoss()(preds, trainY)
loss.backward()
optimizer.step()
self.x[j, :end] = model.lstm.weight_ih_l0.data.view(-1)
self.x[j, start:end] = model.lstm.weight_hh_l0.data.view(-1)
self.x[j, start:end] = model.linear.weight.data.view(-1)
# 判断是否收敛
if self.gbest_fit < 0.01:
break
# 测试CPSO优化LSTMAttention模型
if __name__ == '__main__':
input_dim = 4
hidden_dim = 8
output_dim = 1
n = 20
max_iter = 100
w = 0.8
c1 = 2.0
c2 = 2.0
trainX = Variable(torch.rand(100, 10, input_dim))
trainY = Variable(torch.rand(100, output_dim))
cpso = CPSO(input_dim, hidden_dim, output_dim, n, max_iter, w, c1, c2, trainX, trainY)
cpso.optimize()
best_model = LSTMAttention(input_dim, hidden_dim, output_dim)
best_model.lstm.weight_ih_l0.data = cpso.gbest[:input_dim*hidden_dim].view(input_dim, hidden_dim)
best_model.lstm.weight_hh_l0.data = cpso.gbest[input_dim*hidden_dim:(input_dim+hidden_dim)*hidden_dim].view(hidden_dim, hidden_dim)
best_model.linear.weight.data = cpso.gbest[(input_dim+hidden_dim)*hidden_dim:].view(hidden_dim, output_dim)
print(best_model)
```
在这个例子中,我们定义了一个LSTMAttention模型,同时定义了适应度函数用于衡量每个粒子的适应度值。在CPSO算法的优化过程中,我们使用训练集的预测误差作为每个粒子的适应度值,根据全局最优解和局部最优解,更新每个粒子的速度和位置,以及更新模型参数。在测试的时候,我们输出了最优的LSTMAttention模型参数。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044947.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)