给这些代码引入pca研究特征选择过程对不同算法分类器的影响:import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from PIL import Image # 加载手写数字数据集 digits = load_digits() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42) # 使用高斯朴素贝叶斯分类器进行训练 gnb = GaussianNB() gnb.fit(X_train, y_train) # 对测试集进行预测 y_pred = gnb.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 预处理手写数字图片并进行预测 image = Image.open("digit.jpg").convert("L") image = image.resize((8, 8)) image = np.array(image) image = image.reshape((64,)) prediction = gnb.predict([image]) print("Prediction:", prediction[0]) # 显示手写数字图片 plt.imshow(image.reshape((8,8)), cmap="gray") plt.show()
时间: 2024-03-22 07:39:14 浏览: 119
可以使用sklearn中的PCA模块进行主成分分析。将数据进行降维处理,并选择合适的维度,然后再对分类器进行训练和预测。下面是代码示例:
```
from sklearn.decomposition import PCA
# 对训练集进行PCA降维处理
pca = PCA(n_components=0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
# 使用高斯朴素贝叶斯分类器进行训练
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# 对测试集进行预测
y_pred = gnb.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# 对手写数字图片进行PCA降维处理
image = Image.open("digit.jpg").convert("L")
image = image.resize((8, 8))
image = np.array(image)
image = image.reshape((1, 64))
image = pca.transform(image)
# 进行预测
prediction = gnb.predict(image)
print("Prediction:", prediction[0])
# 显示手写数字图片
plt.imshow(np.array(image).reshape((8,8)), cmap="gray")
plt.show()
```
在上述代码中,我们设置PCA的参数n_components=0.95,表示保留原始数据的95%信息量,然后对训练集和测试集进行降维处理。接着,我们使用相同的高斯朴素贝叶斯分类器进行训练和预测。最后,对手写数字图片进行降维处理,并使用分类器进行预测。
阅读全文