解释代码import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import joblib # 读取 Excel 文件 data = pd.read_excel('所有评论数据(1).xlsx') # 提取文本和情感倾向值 text = data['评论内容'].tolist() sentiment = data['情感倾向'].tolist() # 将连续的情感倾向值转换为离散的类别 threshold = 0.5 sentiment_class = ['positive' if s >= threshold else 'negative' for s in sentiment] # 将文本转换为特征向量 vectorizer = CountVectorizer() X = vectorizer.fit_transform(text) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, sentiment_class, test_size=0.2, random_state=42) # 训练模型 model = LogisticRegression() model.fit(X_train, y_train) # 评估模型 y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 保存模型 joblib.dump(model, 'model.pkl') joblib.dump(vectorizer, 'vectorizer.pkl')
时间: 2024-04-14 16:32:08 浏览: 145
这段代码是一个情感分析的代码示例。它使用了pandas库来读取Excel文件,sklearn库中的CountVectorizer来将文本转换为特征向量,LogisticRegression来训练模型,以及joblib来保存训练好的模型。
首先,代码读取了一个名为"所有评论数据(1).xlsx"的Excel文件,并将评论内容和情感倾向两列数据提取出来。
然后,将连续的情感倾向值转换为离散的类别。在这段代码中,如果情感倾向值大于等于0.5,则将其标记为"positive",否则标记为"negative"。
接下来,使用CountVectorizer将文本转换为特征向量。CountVectorizer是一种常用的文本特征提取方法,它将文本转换为词频矩阵。
然后,使用train_test_split函数将数据集划分为训练集和测试集,其中测试集占总数据集的20%。
接着,创建LogisticRegression模型,并使用训练集进行训练。
然后,使用训练好的模型对测试集进行预测,并计算预测准确率。
最后,使用joblib库将训练好的模型和CountVectorizer保存到文件中,分别命名为"model.pkl"和"vectorizer.pkl"。
这样,就完成了情感分析模型的训练和评估,并将模型保存到文件中,以便后续使用。
相关问题
import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer # df1是经过预处理后的数据集,包含content_clean和category两列 X = df1['content_clean'] y = df1['category'] # 将数据集划分为训练集和测试集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,) # 向量化文本 vectorizer = TfidfVectorizer() train_vectors = vectorizer.fit_transform(train_X) test_vectors = vectorizer.transform(test_X) # X_dense = X.toarray() classifier=GaussianNB().fit(train_vectors, train_labels)
在上述代码中,有一行代码 `classifier=GaussianNB().fit(train_vectors, train_labels)` 中的 `train_labels` 变量未被定义。应该将其改为 `train_y`,即 `classifier=GaussianNB().fit(train_vectors, train_y)`。
此外,代码中导入了两次 `TfidfVectorizer`,只需要导入一次即可:
```
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
# df1是经过预处理后的数据集,包含content_clean和category两列
X = df1['content_clean']
y = df1['category']
# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,)
# 向量化文本
vectorizer = TfidfVectorizer()
train_vectors = vectorizer.fit_transform(train_X)
test_vectors = vectorizer.transform(test_X)
# 训练分类器
classifier = GaussianNB().fit(train_vectors, train_y)
```
这样修改后,代码应该可以正确运行了。
解释一下这段代码:import pandas as pd import numpy as np from sklearn.feature_extraction import DictVectorizer #字典类型特征抽取 from sklearn.model_selection import train_test_split,GridSearchCV #划分数据集,网格搜索 from sklearn.tree import DecisionTreeClassifier #分类树
这段代码主要是导入了 pandas、numpy、sklearn 中的一些常用模块,包括字典类型特征抽取、划分数据集、网格搜索和分类树,具体解释如下:
- 首先导入 pandas 库,用于数据处理和分析。
- 然后导入 numpy 库,用于数值计算和数组操作。
- 接着导入 sklearn.feature_extraction 模块中的 DictVectorizer 类,它可以将字典类型的特征抽取为特征向量,是机器学习中常用的一个工具。
- 导入 sklearn.model_selection 模块中的 train_test_split 和 GridSearchCV 类,前者用于划分数据集,后者用于进行网格搜索。
- 最后导入 sklearn.tree 模块中的 DecisionTreeClassifier 类,它是一个分类树模型,可以用于分类问题的建模。
这些模块和类都是机器学习中常用的工具,可以用于数据处理、特征提取、模型建立等多个方面。
阅读全文