import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB 加载 CSV 文件 train_df = pd.read_csv('train.csv', encoding='utf-8', error_bad_lines=False) test_df = pd.read_csv('test.csv', encoding='utf-8', error_bad_lines=None) # 替换参数 error_bad_lines 删除无效行 train_df.dropna(inplace=True) test_df.dropna(inplace=True) 划分训练集和测试集 X_train = train_df['content'] y_train = train_df['category'] X_test = test_df['content'] y_test = test_df 特征提取 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) 训练模型 model = MultinomialNB() model.fit(X_train, y_train) 测试模型 score = model.score(X_test, y_test) print('Accuracy:', score),优化以上代码
时间: 2023-12-06 17:40:34 浏览: 71
以下是一些可以优化以上代码的建议:
1. 在特征提取的过程中,可以考虑对文本进行预处理,比如去除停用词、进行词干化等操作,提高特征的准确性。
2. 在训练模型之前,可以对数据进行平衡处理,避免类别不平衡导致的模型偏差。可以使用过采样或欠采样等方法。
3. 为了更好的评估模型性能,可以使用交叉验证方法来验证模型的泛化能力,比如k折交叉验证。
4. 为了防止模型过拟合,可以在训练过程中加入正则化项,比如L1或L2正则化。
5. 如果数据量很大,可以考虑使用增量学习方法,逐步更新模型参数,避免重新训练整个模型。
相关问题
能否优化以下程序,使用test.csv和train.csv,程序如下:import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB # 加载 CSV 文件 df = pd.read_csv('news.csv', encoding='utf-8', error_bad_lines=False) # 删除无效行 df.dropna(inplace=True) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df['content'], df['category'], test_size=0.2) # 特征提取 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) # 训练模型 model = MultinomialNB() model.fit(X_train, y_train) # 测试模型 score = model.score(X_test, y_test) print('Accuracy:', score)
以下是优化后的程序:
```python
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
# 加载 CSV 文件
train_df = pd.read_csv('train.csv', encoding='utf-8', error_bad_lines=False)
test_df = pd.read_csv('test.csv', encoding='utf-8', error_bad_lines=False)
# 删除无效行
train_df.dropna(inplace=True)
test_df.dropna(inplace=True)
# 划分训练集和测试集
X_train = train_df['content']
y_train = train_df['category']
X_test = test_df['content']
y_test = test_df['category']
# 特征提取
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
# 训练模型
model = MultinomialNB()
model.fit(X_train, y_train)
# 测试模型
score = model.score(X_test, y_test)
print('Accuracy:', score)
```
优化点如下:
1. 加载了 train.csv 和 test.csv 文件,分别作为训练集和测试集。
2. 删除了无效行的代码,应用到了 train.csv 和 test.csv 中。
3. 划分训练集和测试集时,直接使用 train_df 和 test_df 中的数据,不需要先合并再划分。
4. 代码格式更加清晰易读。
修改代码,使用其他方式跳过错误行,import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB #加载 CSV 文件并忽略错误行 train_df = pd.read_csv('train.csv', encoding='utf-8', error_bad_lines=False) test_df = pd.read_csv('test.csv', encoding='utf-8', error_bad_lines=False) #删除无效行 train_df.dropna(inplace=True) test_df.dropna(inplace=True) #划分训练集和测试集 X_train = train_df['content'] y_train = train_df['category'] X_test = test_df['content'] y_test = test_df #特征提取 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) #训练模型 model = MultinomialNB() model.fit(X_train, y_train) #测试模型 score = model.score(X_test, y_test) print('Accuracy:', score)
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
#加载 CSV 文件并忽略错误行
try:
train_df = pd.read_csv('train.csv', encoding='utf-8')
except:
pass
try:
test_df = pd.read_csv('test.csv', encoding='utf-8')
except:
pass
#删除无效行
train_df.dropna(inplace=True)
test_df.dropna(inplace=True)
#划分训练集和测试集
X_train = train_df['content']
y_train = train_df['category']
X_test = test_df['content']
y_test = test_df
#特征提取
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
#训练模型
model = MultinomialNB()
model.fit(X_train, y_train)
#测试模型
score = model.score(X_test, y_test)
print('Accuracy:', score)
阅读全文