如何修改使得import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split filename = 'D:/111/20news-18828.tar/20newsgroups.srv' with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines() data = np.array(A) df = pd.DataFrame(data, columns=['text'])df['category'] = df['text'].apply(lambda x: x.split('\t')[0]) df['text'] = df['text'].apply(lambda x: x.split('\t')[1]) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42) # 对文本进行特征提取 tfidf = TfidfVectorizer(stop_words='english') X_train_tfidf = tfidf.fit_transform(X_train.astype(str)) X_test_tfidf = tfidf.transform(X_test.astype(str)) # 使用多项式朴素贝叶斯模型进行训练和预测 clf = MultinomialNB() clf.fit(X_train_tfidf, y_train) y_pred = clf.predict(X_test_tfidf) # 输出模型的准确率 print('Accuracy:', accuracy_score(y_test, y_pred))能够从我的文件中分类
时间: 2023-06-19 08:10:55 浏览: 110
python数据分析与可视化 import pandas as pd import numpy as np import m
你可以先将文件路径进行修改,确保能够正确读取文件。然后将文件中的每一行按照制表符进行分割,分成类别和文本两部分。接着使用`train_test_split`函数将数据集分割成训练集和测试集。然后使用`TfidfVectorizer`对文本进行特征提取,并使用`MultinomialNB`训练和预测模型。最后输出模型的准确率。以下是修改后的代码:
```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
filename = 'D:/111/20news-18828.tar/20newsgroups.srv'
with open(filename, 'r', encoding='UTF-8') as file:
A = file.readlines()
data = []
for line in A:
category, text = line.split('\t')
data.append((category, text))
df = pd.DataFrame(data, columns=['category', 'text'])
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)
# 对文本进行特征提取
tfidf = TfidfVectorizer(stop_words='english')
X_train_tfidf = tfidf.fit_transform(X_train.astype(str))
X_test_tfidf = tfidf.transform(X_test.astype(str))
# 使用多项式朴素贝叶斯模型进行训练和预测
clf = MultinomialNB()
clf.fit(X_train_tfidf, y_train)
y_pred = clf.predict(X_test_tfidf)
# 输出模型的准确率
print('Accuracy:', accuracy_score(y_test, y_pred))
```
阅读全文