Visual Studio Code能否import pandas as pdimport numpy as npfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import accuracy_scorefrom sklearn.model_selection import train_test_splitfilename = 'D:/111/20news-18828.tar/20newsgroups.srv'with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines()data = []for line in A: category, text = line.split('\t') data.append((category, text))df = pd.DataFrame(data, columns=['category', 'text'])# 分割数据集为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)# 对文本进行特征提取tfidf = TfidfVectorizer(stop_words='english')X_train_tfidf = tfidf.fit_transform(X_train.astype(str))X_test_tfidf = tfidf.transform(X_test.astype(str))# 使用多项式朴素贝叶斯模型进行训练和预测clf = MultinomialNB()clf.fit(X_train_tfidf, y_train)y_pred = clf.predict(X_test_tfidf)# 输出模型的准确率print('Accuracy:', accuracy_score(y_test, y_pred))显示结果
时间: 2023-06-19 11:10:41 浏览: 272
python数据分析与可视化 import pandas as pd import numpy as np import m
Visual Studio Code可以import pandas as pd、import numpy as np、from sklearn.feature_extraction.text import TfidfVectorizer、from sklearn.naive_bayes import MultinomialNB、from sklearn.metrics import accuracy_score、from sklearn.model_selection import train_test_split等库,并运行你提供的代码。如果你有任何问题或者错误信息,请提供相关信息以便更好地帮助你。
阅读全文