import pandas as pdimport numpy as npfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import accuracy_scorefrom sklearn.model_selection import train_test_splitfilename = 'D:/111/20news-18828.tar/20newsgroups.srv'with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines()data = []for line in A: category, text = line.split('\t') data.append((category, text))df = pd.DataFrame(data, columns=['category', 'text'])# 分割数据集为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)# 对文本进行特征提取tfidf = TfidfVectorizer(stop_words='english')X_train_tfidf = tfidf.fit_transform(X_train.astype(str))X_test_tfidf = tfidf.transform(X_test.astype(str))# 使用多项式朴素贝叶斯模型进行训练和预测clf = MultinomialNB()clf.fit(X_train_tfidf, y_train)y_pred = clf.predict(X_test_tfidf)# 输出模型的准确率print('Accuracy:', accuracy_score(y_test, y_pred))在终端上指出“conda”无法显示结果
时间: 2023-06-19 09:10:43 浏览: 189
这是因为代码中没有使用print()函数来输出结果。你可以在代码末尾添加以下代码:print('Accuracy:', accuracy_score(y_test, y_pred)),这样就可以在终端上看到模型的准确率了。另外,如果你使用的是Jupyter Notebook等交互式环境,可以直接运行代码块来查看输出结果。
相关问题
Visual Studio Code能否import pandas as pdimport numpy as npfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import accuracy_scorefrom sklearn.model_selection import train_test_splitfilename = 'D:/111/20news-18828.tar/20newsgroups.srv'with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines()data = []for line in A: category, text = line.split('\t') data.append((category, text))df = pd.DataFrame(data, columns=['category', 'text'])# 分割数据集为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)# 对文本进行特征提取tfidf = TfidfVectorizer(stop_words='english')X_train_tfidf = tfidf.fit_transform(X_train.astype(str))X_test_tfidf = tfidf.transform(X_test.astype(str))# 使用多项式朴素贝叶斯模型进行训练和预测clf = MultinomialNB()clf.fit(X_train_tfidf, y_train)y_pred = clf.predict(X_test_tfidf)# 输出模型的准确率print('Accuracy:', accuracy_score(y_test, y_pred))显示结果
Visual Studio Code可以import pandas as pd、import numpy as np、from sklearn.feature_extraction.text import TfidfVectorizer、from sklearn.naive_bayes import MultinomialNB、from sklearn.metrics import accuracy_score、from sklearn.model_selection import train_test_split等库,并运行你提供的代码。如果你有任何问题或者错误信息,请提供相关信息以便更好地帮助你。
使用了 Anaconda 管理 Python 环境,如何运行import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split filename = 'D:/111/20news-18828.tar/20newsgroups.srv' with open(filename, 'r', encoding='UTF-8') as file: A = file.readlines() data = [] for line in A: category, text = line.split('\t') data.append((category, text)) df = pd.DataFrame(data, columns=['category', 'text']) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42) # 对文本进行特征提取 tfidf = TfidfVectorizer(stop_words='english') X_train_tfidf = tfidf.fit_transform(X_train.astype(str)) X_test_tfidf = tfidf.transform(X_test.astype(str)) # 使用多项式朴素贝叶斯模型进行训练和预测 clf = MultinomialNB() clf.fit(X_train_tfidf, y_train) y_pred = clf.predict(X_test_tfidf) # 输出模型的准确率 print('Accuracy:', accuracy_score(y_test, y_pred))
可以在 Anaconda Prompt 或者终端中打开 Python 解释器,然后将代码复制粘贴进去并运行。具体步骤如下:
1. 打开 Anaconda Prompt 或者终端。
2. 输入 `python` 命令进入 Python 解释器。
3. 将代码复制粘贴进去,并按下回车键执行。
4. 等待代码执行完毕,最后会输出模型的准确率。
注意,在运行代码之前,需要将文件路径 `D:/111/20news-18828.tar/20newsgroups.srv` 修改为实际存在的文件路径。
阅读全文