import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer # df1是经过预处理后的数据集,包含content_clean和category两列 X = df1['content_clean'] y = df1['category'] # 将数据集划分为训练集和测试集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,) # 向量化文本 vectorizer = TfidfVectorizer() train_vectors = vectorizer.fit_transform(train_X) test_vectors = vectorizer.transform(test_X) # X_dense = X.toarray() classifier=GaussianNB().fit(train_vectors, train_labels)
时间: 2023-12-24 10:23:07 浏览: 230
用pandas划分数据集实现训练集和测试集
5星 · 资源好评率100%
在上述代码中,有一行代码 `classifier=GaussianNB().fit(train_vectors, train_labels)` 中的 `train_labels` 变量未被定义。应该将其改为 `train_y`,即 `classifier=GaussianNB().fit(train_vectors, train_y)`。
此外,代码中导入了两次 `TfidfVectorizer`,只需要导入一次即可:
```
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
# df1是经过预处理后的数据集,包含content_clean和category两列
X = df1['content_clean']
y = df1['category']
# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,)
# 向量化文本
vectorizer = TfidfVectorizer()
train_vectors = vectorizer.fit_transform(train_X)
test_vectors = vectorizer.transform(test_X)
# 训练分类器
classifier = GaussianNB().fit(train_vectors, train_y)
```
这样修改后,代码应该可以正确运行了。
阅读全文