写一个复杂的LSTM类
时间: 2023-08-15 22:08:00 浏览: 152
好的,下面是一个复杂的LSTM类的代码实现:
```python
import numpy as np
class LSTM:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
# 初始化权重和偏置
self.Wf = np.random.randn(hidden_dim, input_dim + hidden_dim)
self.Uf = np.random.randn(hidden_dim, hidden_dim)
self.bf = np.zeros((hidden_dim, 1))
self.Wi = np.random.randn(hidden_dim, input_dim + hidden_dim)
self.Ui = np.random.randn(hidden_dim, hidden_dim)
self.bi = np.zeros((hidden_dim, 1))
self.Wc = np.random.randn(hidden_dim, input_dim + hidden_dim)
self.Uc = np.random.randn(hidden_dim, hidden_dim)
self.bc = np.zeros((hidden_dim, 1))
self.Wo = np.random.randn(hidden_dim, input_dim + hidden_dim)
self.Uo = np.random.randn(hidden_dim, hidden_dim)
self.bo = np.zeros((hidden_dim, 1))
self.Wy = np.random.randn(output_dim, hidden_dim)
self.by = np.zeros((output_dim, 1))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def tanh(self, x):
return np.tanh(x)
def forward(self, x, h_prev, c_prev):
# 计算遗忘门
f = self.sigmoid(np.dot(self.Wf, np.concatenate((x, h_prev), axis=0)) + np.dot(self.Uf, c_prev) + self.bf)
# 计算输入门
i = self.sigmoid(np.dot(self.Wi, np.concatenate((x, h_prev), axis=0)) + np.dot(self.Ui, c_prev) + self.bi)
# 计算新的候选单元状态
c_tilde = self.tanh(np.dot(self.Wc, np.concatenate((x, h_prev), axis=0)) + np.dot(self.Uc, c_prev) + self.bc)
# 更新单元状态
c = f * c_prev + i * c_tilde
# 计算输出门
o = self.sigmoid(np.dot(self.Wo, np.concatenate((x, h_prev), axis=0)) + np.dot(self.Uo, c) + self.bo)
# 计算隐藏状态和输出
h = o * self.tanh(c)
y = np.dot(self.Wy, h) + self.by
# 保存中间变量,供反向传播使用
self.x = x
self.h_prev = h_prev
self.c_prev = c_prev
self.f = f
self.i = i
self.c_tilde = c_tilde
self.c = c
self.o = o
self.h = h
return y
def backward(self, dy, dh_next, dc_next):
# 反向传播输出层
dWy = np.dot(dy, self.h.T)
dby = dy
# 反向传播隐藏层
dh = np.dot(self.Wy.T, dy) + dh_next
do = dh * self.tanh(self.c)
do = do * self.o * (1 - self.o)
dUo = np.dot(do, self.c.T)
dWo = np.dot(do, np.concatenate((self.x, self.h_prev), axis=0).T)
dbo = do
dc = dh * self.o * (1 - self.tanh(self.c) ** 2) + dc_next
dc_tilde = dc * self.i
dc_tilde = dc_tilde * (1 - self.c_tilde ** 2)
dUc = np.dot(dc_tilde, self.c_prev.T)
dWc = np.dot(dc_tilde, np.concatenate((self.x, self.h_prev), axis=0).T)
dbc = dc_tilde
di = dc * self.c_tilde
di = di * self.i * (1 - self.i)
dUi = np.dot(di, self.c_prev.T)
dWi = np.dot(di, np.concatenate((self.x, self.h_prev), axis=0).T)
dbi = di
df = dc * self.c_prev
df = df * self.f * (1 - self.f)
dUf = np.dot(df, self.c_prev.T)
dWf = np.dot(df, np.concatenate((self.x, self.h_prev), axis=0).T)
dbf = df
# 反向传播到上一层
dx = np.dot(self.Wf.T[:, :self.input_dim], dWf) + \
np.dot(self.Wi.T[:, :self.input_dim], dWi) + \
np.dot(self.Wc.T[:, :self.input_dim], dWc) + \
np.dot(self.Wo.T[:, :self.input_dim], dWo)
dh_prev = np.dot(self.Wf.T[:, self.input_dim:], dWf) + \
np.dot(self.Wi.T[:, self.input_dim:], dWi) + \
np.dot(self.Wc.T[:, self.input_dim:], dWc) + \
np.dot(self.Wo.T[:, self.input_dim:], dWo)
dc_prev = dc * self.f
return dx, dh_prev, dc_prev, dWf, dUf, dbf, dWi, dUi, dbi, dWc, dUc, dbc, dWo, dUo, dbo, dWy, dby
def update(self, dWf, dUf, dbf, dWi, dUi, dbi, dWc, dUc, dbc, dWo, dUo, dbo, dWy, dby, lr):
# 更新权重和偏置
self.Wf -= lr * dWf
self.Uf -= lr * dUf
self.bf -= lr * dbf
self.Wi -= lr * dWi
self.Ui -= lr * dUi
self.bi -= lr * dbi
self.Wc -= lr * dWc
self.Uc -= lr * dUc
self.bc -= lr * dbc
self.Wo -= lr * dWo
self.Uo -= lr * dUo
self.bo -= lr * dbo
self.Wy -= lr * dWy
self.by -= lr * dby
```
这个LSTM类实现了前向传播、反向传播和权重更新。其中,前向传播计算了各个门和状态的值,反向传播则计算了各个门和状态对损失函数的梯度,权重更新则根据梯度和学习率来更新权重和偏置。
阅读全文