写一个复杂的LSTM的nn.module类,并给出各参数
时间: 2024-03-11 15:44:36 浏览: 163
好的,下面是一个复杂的LSTM的nn.module类的实现,其中包含了多个LSTM层、Dropout层和全连接层:
```python
import torch.nn as nn
class ComplexLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout=0.5):
super(ComplexLSTM, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.lstm_layers = nn.ModuleList()
self.dropout_layers = nn.ModuleList()
for i in range(num_layers):
if i == 0:
lstm_layer = nn.LSTM(input_size, hidden_size, bidirectional=True)
else:
lstm_layer = nn.LSTM(hidden_size * 2, hidden_size, bidirectional=True)
dropout_layer = nn.Dropout(p=dropout)
self.lstm_layers.append(lstm_layer)
self.dropout_layers.append(dropout_layer)
self.fc_layer = nn.Linear(hidden_size * 2, 1)
def forward(self, input_seq):
h_t = torch.zeros(2 * self.num_layers, input_seq.size(0), self.hidden_size).to(device) # initial hidden state
c_t = torch.zeros(2 * self.num_layers, input_seq.size(0), self.hidden_size).to(device) # initial cell state
for i in range(self.num_layers):
lstm_out, (h_t, c_t) = self.lstm_layers[i](input_seq, (h_t, c_t))
input_seq = lstm_out
input_seq = self.dropout_layers[i](input_seq)
output = self.fc_layer(input_seq)
return output
```
其中各参数含义如下:
- `input_size`:输入特征的维度。
- `hidden_size`:LSTM的隐藏层维度。
- `num_layers`:LSTM的层数。
- `dropout`:Dropout层的概率。默认为0.5。
阅读全文