class Decoder(nn.Module): def __init__(self,decoder_embedding_num,decoder_hidden_num,ch_corpus_len): super().__init__() self.embedding = nn.Embedding(ch_corpus_len,decoder_embedding_num) self.lstm = nn.LSTM(decoder_embedding_num,decoder_hidden_num,batch_first=True) def forward(self,decoder_input,hidden): embedding = self.embedding(decoder_input) decoder_output,decoder_hidden = self.lstm(embedding,hidden) return decoder_output,decoder_hidden解释每行代码的含义
时间: 2023-06-12 14:05:44 浏览: 136
- 第一行定义了一个名为 Decoder 的类,继承了 nn.Module 类。
- 第二行定义了该类的构造函数,构造函数中有三个参数:decoder_embedding_num 表示解码器嵌入层的维度,decoder_hidden_num 表示解码器 LSTM 层的隐藏层维度,ch_corpus_len 表示中文语料库中字符的数量。
- 第三行调用了 nn.Module 类的构造函数。
- 第四行使用 nn.Embedding 类创建了一个嵌入层对象,该嵌入层的输入维度为 ch_corpus_len,输出维度为 decoder_embedding_num,其中 ch_corpus_len 表示中文语料库中字符的数量。
- 第五行使用 nn.LSTM 类创建了一个 LSTM 层对象,该 LSTM 层的输入维度为 decoder_embedding_num,输出维度为 decoder_hidden_num,batch_first=True 表示输入的第一维是 batch_size。
- 第七至九行定义了 forward 函数,该函数接受两个参数:decoder_input 表示解码器输入序列,hidden 表示解码器的初始隐藏状态。在函数中,首先将 decoder_input 通过嵌入层进行编码,得到编码后的 embedding,接着将 embedding 和 hidden 作为输入传入 LSTM 层中,得到解码器的输出 decoder_output 和新的隐藏状态 decoder_hidden,最后将 decoder_output 和 decoder_hidden 作为输出返回。
阅读全文