class Decoder(nn.Module): def __init__(self,decoder_embedding_num,decoder_hidden_num,ch_corpus_len): super().__init__() self.embedding = nn.Embedding(ch_corpus_len,decoder_embedding_num) self.lstm = nn.LSTM(decoder_embedding_num,decoder_hidden_num,batch_first=True) def forward(self,decoder_input,hidden): embedding = self.embedding(decoder_input) decoder_output,decoder_hidden = self.lstm(embedding,hidden) return decoder_output,decoder_hidden解释每行代码的含义

时间: 2023-06-12 22:05:44 浏览: 142
- 第一行定义了一个名为 Decoder 的类,继承了 nn.Module 类。 - 第二行定义了该类的构造函数,构造函数中有三个参数:decoder_embedding_num 表示解码器嵌入层的维度,decoder_hidden_num 表示解码器 LSTM 层的隐藏层维度,ch_corpus_len 表示中文语料库中字符的数量。 - 第三行调用了 nn.Module 类的构造函数。 - 第四行使用 nn.Embedding 类创建了一个嵌入层对象,该嵌入层的输入维度为 ch_corpus_len,输出维度为 decoder_embedding_num,其中 ch_corpus_len 表示中文语料库中字符的数量。 - 第五行使用 nn.LSTM 类创建了一个 LSTM 层对象,该 LSTM 层的输入维度为 decoder_embedding_num,输出维度为 decoder_hidden_num,batch_first=True 表示输入的第一维是 batch_size。 - 第七至九行定义了 forward 函数,该函数接受两个参数:decoder_input 表示解码器输入序列,hidden 表示解码器的初始隐藏状态。在函数中,首先将 decoder_input 通过嵌入层进行编码,得到编码后的 embedding,接着将 embedding 和 hidden 作为输入传入 LSTM 层中,得到解码器的输出 decoder_output 和新的隐藏状态 decoder_hidden,最后将 decoder_output 和 decoder_hidden 作为输出返回。
阅读全文

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): ''' dec_inputs: [batch_size, tgt_len] enc_intpus: [batch_size, src_len] enc_outputs: [batsh_size, src_len, d_model] ''' dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1).cuda() # [batch_size, tgt_len, d_model] dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask), 0).cuda() # [batch_size, tgt_len, tgt_len] dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len] dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns

def encode(self, source_padded: torch.Tensor, source_lengths: List[int]) -> Tuple[ torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: enc_hiddens, dec_init_state = None, None """ add your code here -- 5 目标: 1. 将编码器应用于源句子以获得编码器的隐藏状态。 2. 将编码器的最终状态投射到解码器,以获得解码器的初始状态。 步骤: 1. 使用 self.model_embeddings 在 src sentences 上构建一个 Tensor X, shape (max_sent_len, batch_size, embedding_size) 注意, encoder和 decoder 不同, encoder是没有初始的 hidden state和cell state的. 2. 把 self.encoder 作用到 X 上 得到 enc_hiddens, last_hidden, last_cell. - 首先 使用 pack_padded_sequence 函数到 X 上, 把处理后的 Tensor 送进 self.encoder中. - 使用 pad_packed_sequence 函数到 enc_hiddens. - 注意: 编码器的输出是shape (max_src_sent_len, batch_size, hidden_size*2), 需要permute 成 (batch_size, max_src_sent_len, hidden_size*2) - 注意: 使用 pad_packed_sequence 时, batch 中的每一个元素应该是相同的shape 3. 获得解码器的初始状态: dec_init_state = (init_decoder_hidden, init_decoder_cell): - init_decoder_hidden: 解码器 初始hidden-state - 编码器的last_hidden 的 shape (2, batch_size, hidden_size), 因为编码器是双向的. - Concatenate 双向的hidden—state 得到 shape (batch_size, 2*hidden_size). - 使用 self.h_projection, 得到 init_decoder_hidden. - init_decoder_cell: 解码器 初始 cell-state - 编码器的last_cell 的 shape (2, batch_size, hidden_size), 因为编码器是双向的. - Concatenate 双向的hidden—state 得到 shape (batch_size, 2*hidden_size).. - 使用 self.c_projection 得到 init_decoder_cell.

帮我看一些这段代码有什么问题:class EncoderDecoder(nn.Module): def init(self,encoder,decoder,source_embed,target_embed,generator): #encoder:代表编码器对象 #decoder:代表解码器对象 #source_embed:代表源数据的嵌入 #target_embed:代表目标数据的嵌入 #generator:代表输出部分类别生成器对象 super(EncoderDecoder,self).init() self.encoder=encoder self.decoder=decoder self.src_embed=source_embed self.tgt_embed=target_embed self.generator=generator def forward(self,source,target,source_mask,target_mask): #source:代表源数据 #target:代表目标数据 #source_mask:代表源数据的掩码张量 #target_mask:代表目标数据的掩码张量 return self.decode(self.encode(source,source_mask),source_mask, target,target_mask) def encode(self,source,source_mask): return self.encoder(self.src_embed(source),source_mask) def decode(self,memory,source_mask,target,target_mask): #memory:代表经历编码器编码后的输出张量 return self.decoder(self.tgt_embed(target),memory,source_mask,target) vocab_size=1000 d_model=512 encoder=en decoder=de source_embed=nn.Embedding(vocab_size,d_model) target_embed=nn.Embedding(vocab_size,d_model) generator=gen source=target=Variable(torch.LongTensor([[100,2,421,500],[491,998,1,221]])) source_mask=target_mask=Variable(torch.zeros(8,4,4)) ed=EncoderDecoder(encoder,decoder,source_embed,target_embed,generator ) ed_result=ed(source,target,source_mask,target_mask) print(ed_result) print(ed_result.shape)

最新推荐

recommend-type

机器学习(预测模型):新私家车注册和燃料类型的详细统计数据

数据集提供了关于新私家车注册和燃料类型的详细统计数据。这个数据集包含了不同国家或地区在一定时期内新注册的私家车数量,以及这些车辆所使用的燃料类型分布。这些信息对于分析汽车市场趋势、能源消耗模式以及环境影响等方面具有重要价值。 该数据集可能包含以下关键信息: 时间范围:数据覆盖的具体年份或时间段。 地理覆盖:包括的国家或地区,可能涉及全球、特定大洲或单一国家。 车辆类型:私家车的新注册数量,可能按车辆类型(如轿车、SUV等)分类。 燃料类型:包括各种燃料类型的车辆数量,如汽油、柴油、电动、混合动力等。 趋势分析:随时间变化的新注册车辆数量和燃料类型的分布变化。 通过这个数据集,研究人员、政策制定者和市场分析师可以深入了解私家车市场的发展动态,评估不同燃料类型车辆的市场接受度,以及预测未来市场趋势。这对于制定交通政策、推动能源转型和减少环境污染等方面具有重要意义。
recommend-type

【JCR一区级】基于matlab蚁狮算法ALO-CNN-BiLSTM-Attention故障诊断分类预测【Matlab仿真 5476期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

人工智能与机器学习之多级关联规则学习:Python实现与应用

内容概要:本文介绍了多级关联规则学习在数据挖掘和机器学习中的应用,特别是多级 Apriori 算法。主要内容包括多级关联规则的基本概念、多级 Apriori 算法的原理和实现步骤、Python 代码示例以及在零售业和电子商务推荐系统中的具体应用。文章还讨论了算法的局限性和未来研究方向,如高效算法设计、规则精简与优化、可视化与解释等。 适合人群:具备一定编程基础的数据科学家、机器学习工程师和研究人员。 使用场景及目标:①零售业中的商品关联分析;②电子商务中的个性化推荐系统;③多级关联规则学习的高级应用和技术改进。 其他说明:文章提供了详细的 Python 代码示例,包括数据预处理、多级 Apriori 算法实现、关联规则生成等。同时,文中还介绍了如何处理大规模数据集和稀疏数据集的策略,以及如何应用多级关联规则在实际业务中提供数据支持。
recommend-type

默纳克刷机,默纳克刷协议,默纳克显示板 外呼板协议更改 烧录 默纳克各种软件各种刷机,含主板、轿顶板、外呼板刷机软件原程序、操作器刷机软件及协议一应俱全

默纳克刷机,默纳克刷协议,默纳克显示板 外呼板协议更改 烧录 默纳克各种软件各种刷机,含主板、轿顶板、外呼板刷机软件原程序、操作器刷机软件及协议一应俱全。
recommend-type

CoreOS部署神器:configdrive_creator脚本详解

资源摘要信息:"配置驱动器(cloud-config)生成器是一个用于在部署CoreOS系统时,通过编写用户自定义项的脚本工具。这个脚本的核心功能是生成包含cloud-config文件的configdrive.iso映像文件,使得用户可以在此过程中自定义CoreOS的配置。脚本提供了一个简单的用法,允许用户通过复制、编辑和执行脚本的方式生成配置驱动器。此外,该项目还接受社区贡献,包括创建新的功能分支、提交更改以及将更改推送到远程仓库的详细说明。" 知识点: 1. CoreOS部署:CoreOS是一个轻量级、容器优化的操作系统,专门为了大规模服务器部署和集群管理而设计。它提供了一套基于Docker的解决方案来管理应用程序的容器化。 2. cloud-config:cloud-config是一种YAML格式的数据描述文件,它允许用户指定云环境中的系统配置。在CoreOS的部署过程中,cloud-config文件可以用于定制系统的启动过程,包括用户管理、系统服务管理、网络配置、文件系统挂载等。 3. 配置驱动器(ConfigDrive):这是云基础设施中使用的一种元数据服务,它允许虚拟机实例在启动时通过一个预先配置的ISO文件读取自定义的数据。对于CoreOS来说,这意味着可以在启动时应用cloud-config文件,实现自动化配置。 4. Bash脚本:configdrive_creator.sh是一个Bash脚本,它通过命令行界面接收输入,执行系统级任务。在本例中,脚本的目的是创建一个包含cloud-config的configdrive.iso文件,方便用户在CoreOS部署时使用。 5. 配置编辑:脚本中提到了用户需要编辑user_data文件以满足自己的部署需求。user_data.example文件提供了一个cloud-config的模板,用户可以根据实际需要对其中的内容进行修改。 6. 权限设置:在执行Bash脚本之前,需要赋予其执行权限。命令chmod +x configdrive_creator.sh即是赋予该脚本执行权限的操作。 7. 文件系统操作:生成的configdrive.iso文件将作为虚拟机的配置驱动器挂载使用。用户需要将生成的iso文件挂载到一个虚拟驱动器上,以便在CoreOS启动时读取其中的cloud-config内容。 8. 版本控制系统:脚本的贡献部分提到了Git的使用,Git是一个开源的分布式版本控制系统,用于跟踪源代码变更,并且能够高效地管理项目的历史记录。贡献者在提交更改之前,需要创建功能分支,并在完成后将更改推送到远程仓库。 9. 社区贡献:鼓励用户对项目做出贡献,不仅可以通过提问题、报告bug来帮助改进项目,还可以通过创建功能分支并提交代码贡献自己的新功能。这是一个开源项目典型的协作方式,旨在通过社区共同开发和维护。 在使用configdrive_creator脚本进行CoreOS配置时,用户应当具备一定的Linux操作知识、对cloud-config文件格式有所了解,并且熟悉Bash脚本的编写和执行。此外,需要了解如何使用Git进行版本控制和代码贡献,以便能够参与到项目的进一步开发中。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【在线考试系统设计秘籍】:掌握文档与UML图的关键步骤

![在线考试系统文档以及其用例图、模块图、时序图、实体类图](http://bm.hnzyzgpx.com/upload/info/image/20181102/20181102114234_9843.jpg) # 摘要 在线考试系统是一个集成了多种技术的复杂应用,它满足了教育和培训领域对于远程评估的需求。本文首先进行了需求分析,确保系统能够符合教育机构和学生的具体需要。接着,重点介绍了系统的功能设计,包括用户认证、角色权限管理、题库构建、随机抽题算法、自动评分及成绩反馈机制。此外,本文也探讨了界面设计原则、前端实现技术以及用户测试,以提升用户体验。数据库设计部分包括选型、表结构设计、安全性
recommend-type

如何在Verilog中实现一个参数化模块,并解释其在模块化设计中的作用与优势?

在Verilog中实现参数化模块是一个高级话题,这对于设计复用和模块化编程至关重要。参数化模块允许设计师在不同实例之间灵活调整参数,而无需对模块的源代码进行修改。这种设计方法是硬件描述语言(HDL)的精髓,能够显著提高设计的灵活性和可维护性。要创建一个参数化模块,首先需要在模块定义时使用`parameter`关键字来声明一个或多个参数。例如,创建一个参数化宽度的寄存器模块,可以这样定义: 参考资源链接:[Verilog经典教程:从入门到高级设计](https://wenku.csdn.net/doc/4o3wyv4nxd?spm=1055.2569.3001.10343) ``` modu
recommend-type

探索CCR-Studio.github.io: JavaScript的前沿实践平台

资源摘要信息:"CCR-Studio.github.io" CCR-Studio.github.io 是一个指向GitHub平台上的CCR-Studio用户所创建的在线项目或页面的链接。GitHub是一个由程序员和开发人员广泛使用的代码托管和版本控制平台,提供了分布式版本控制和源代码管理功能。CCR-Studio很可能是该项目或页面的负责团队或个人的名称,而.github.io则是GitHub提供的一个特殊域名格式,用于托管静态网站和博客。使用.github.io作为域名的仓库在GitHub Pages上被直接识别为网站服务,这意味着CCR-Studio可以使用这个仓库来托管一个基于Web的项目,如个人博客、项目展示页或其他类型的网站。 在描述中,同样提供的是CCR-Studio.github.io的信息,但没有更多的描述性内容。不过,由于它被标记为"JavaScript",我们可以推测该网站或项目可能主要涉及JavaScript技术。JavaScript是一种广泛使用的高级编程语言,它是Web开发的核心技术之一,经常用于网页的前端开发中,提供了网页与用户的交云动性和动态内容。如果CCR-Studio.github.io确实与JavaScript相关联,它可能是一个演示项目、框架、库或与JavaScript编程实践有关的教育内容。 在提供的压缩包子文件的文件名称列表中,只有一个条目:"CCR-Studio.github.io-main"。这个文件名暗示了这是一个主仓库的压缩版本,其中包含了一个名为"main"的主分支或主文件夹。在Git版本控制中,主分支通常代表了项目最新的开发状态,开发者在此分支上工作并不断集成新功能和修复。"main"分支(也被称为"master"分支,在Git的新版本中推荐使用"main"作为默认主分支名称)是项目的主干,所有其他分支往往都会合并回这个分支,保证了项目的稳定性和向前推进。 在IT行业中,"CCR-Studio.github.io-main"可能是一个版本控制仓库的快照,包含项目源代码、配置文件、资源文件、依赖管理文件等。对于个人开发者或团队而言,这种压缩包能够帮助他们管理项目版本,快速部署网站,以及向其他开发者分发代码。它也可能是用于备份目的,确保项目的源代码和相关资源能够被安全地存储和转移。在Git仓库中,通常可以使用如git archive命令来创建当前分支的压缩包。 总体而言,CCR-Studio.github.io资源表明了一个可能以JavaScript为主题的技术项目或者展示页面,它在GitHub上托管并提供相关资源的存档压缩包。这种项目在Web开发社区中很常见,经常被用来展示个人或团队的开发能力,以及作为开源项目和代码学习的平台。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依