def forward(self,decoder_input,hidden): embedding = self.embedding(decoder_input) decoder_output,decoder_hidden = self.lstm(embedding,hidden)解释每行代码的含义

时间: 2023-06-12 10:05:34 浏览: 44
- `def forward(self, decoder_input, hidden):` 定义了一个名为 `forward` 的函数,它有三个参数:`self` 表示实例化后的对象本身,`decoder_input` 表示解码器的输入,`hidden` 表示解码器的隐藏状态。 - `embedding = self.embedding(decoder_input)` 将输入 `decoder_input` 通过嵌入层 `self.embedding` 进行嵌入,得到嵌入向量 `embedding`。 - `decoder_output, decoder_hidden = self.lstm(embedding, hidden)` 将嵌入向量 `embedding` 和隐藏状态 `hidden` 传入 LSTM 层 `self.lstm` 进行计算。`decoder_output` 表示解码器的输出,`decoder_hidden` 表示解码器的新的隐藏状态。 整个函数实现了解码器的前向传播过程,即将输入通过嵌入层进行嵌入后,传入 LSTM 层计算得到输出和新的隐藏状态。
相关问题

class Decoder(nn.Module): def __init__(self,decoder_embedding_num,decoder_hidden_num,ch_corpus_len): super().__init__() self.embedding = nn.Embedding(ch_corpus_len,decoder_embedding_num) self.lstm = nn.LSTM(decoder_embedding_num,decoder_hidden_num,batch_first=True) def forward(self,decoder_input,hidden): embedding = self.embedding(decoder_input) decoder_output,decoder_hidden = self.lstm(embedding,hidden) return decoder_output,decoder_hidden解释每行代码的含义

- 第一行定义了一个名为 Decoder 的类,继承了 nn.Module 类。 - 第二行定义了该类的构造函数,构造函数中有三个参数:decoder_embedding_num 表示解码器嵌入层的维度,decoder_hidden_num 表示解码器 LSTM 层的隐藏层维度,ch_corpus_len 表示中文语料库中字符的数量。 - 第三行调用了 nn.Module 类的构造函数。 - 第四行使用 nn.Embedding 类创建了一个嵌入层对象,该嵌入层的输入维度为 ch_corpus_len,输出维度为 decoder_embedding_num,其中 ch_corpus_len 表示中文语料库中字符的数量。 - 第五行使用 nn.LSTM 类创建了一个 LSTM 层对象,该 LSTM 层的输入维度为 decoder_embedding_num,输出维度为 decoder_hidden_num,batch_first=True 表示输入的第一维是 batch_size。 - 第七至九行定义了 forward 函数,该函数接受两个参数:decoder_input 表示解码器输入序列,hidden 表示解码器的初始隐藏状态。在函数中,首先将 decoder_input 通过嵌入层进行编码,得到编码后的 embedding,接着将 embedding 和 hidden 作为输入传入 LSTM 层中,得到解码器的输出 decoder_output 和新的隐藏状态 decoder_hidden,最后将 decoder_output 和 decoder_hidden 作为输出返回。

class Seq2Seq(nn.Module): def __init__(self,encoder_embedding_num,encoder_hidden_num,en_corpus_len,decoder_embedding_num,decoder_hidden_num,ch_corpus_len): super().__init__() self.encoder = Encoder(encoder_embedding_num,encoder_hidden_num,en_corpus_len) self.decoder = Decoder(decoder_embedding_num,decoder_hidden_num,ch_corpus_len) self.classifier = nn.Linear(decoder_hidden_num,ch_corpus_len) self.cross_loss = nn.CrossEntropyLoss() def forward(self,en_index,ch_index): decoder_input = ch_index[:,:-1] label = ch_index[:,1:] encoder_hidden = self.encoder(en_index) decoder_output,_ = self.decoder(decoder_input,encoder_hidden) pre = self.classifier(decoder_output) loss = self.cross_loss(pre.reshape(-1,pre.shape[-1]),label.reshape(-1)) return loss解释每行代码的含义

- `class Seq2Seq(nn.Module):`:定义一个名为 Seq2Seq 的类,继承自 nn.Module 类。 - `def __init__(self,encoder_embedding_num,encoder_hidden_num,en_corpus_len,decoder_embedding_num,decoder_hidden_num,ch_corpus_len):`:定义 Seq2Seq 类的初始化方法,接收六个参数。 - `super().__init__():`:调用父类 nn.Module 的初始化方法。 - `self.encoder = Encoder(encoder_embedding_num,encoder_hidden_num,en_corpus_len)`: 创建一个 Encoder 对象,并将其保存在 Seq2Seq 类的 encoder 属性中。 - `self.decoder = Decoder(decoder_embedding_num,decoder_hidden_num,ch_corpus_len)`: 创建一个 Decoder 对象,并将其保存在 Seq2Seq 类的 decoder 属性中。 - `self.classifier = nn.Linear(decoder_hidden_num,ch_corpus_len)`: 创建一个线性层对象,将其保存在 Seq2Seq 类的 classifier 属性中。 - `self.cross_loss = nn.CrossEntropyLoss()`: 创建一个交叉熵损失函数对象,将其保存在 Seq2Seq 类的 cross_loss 属性中。 - `def forward(self,en_index,ch_index):`:定义 Seq2Seq 类的前向传播方法,接收两个参数。 - `decoder_input = ch_index[:,:-1]`: 将目标序列 ch_index 去掉最后一个元素,并赋值给 decoder_input。 - `label = ch_index[:,1:]`: 将目标序列 ch_index 去掉第一个元素,并赋值给 label。 - `encoder_hidden = self.encoder(en_index)`: 通过调用 Encoder 对象的 __call__ 方法,将源序列 en_index 作为输入,得到编码器的隐状态,并将其赋值给 encoder_hidden。 - `decoder_output,_ = self.decoder(decoder_input,encoder_hidden)`: 通过调用 Decoder 对象的 __call__ 方法,将 decoder_input 和 encoder_hidden 作为输入,得到解码器的输出和隐状态,并将输出赋值给 decoder_output。 - `pre = self.classifier(decoder_output)`: 将 decoder_output 作为输入,通过调用线性层对象 self.classifier 得到预测值 pre。 - `loss = self.cross_loss(pre.reshape(-1,pre.shape[-1]),label.reshape(-1))`: 将 pre 和 label 通过交叉熵损失函数计算损失值 loss。 - `return loss`: 返回损失值 loss。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

帮我看一些这段代码有什么问题:class EncoderDecoder(nn.Module): def init(self,encoder,decoder,source_embed,target_embed,generator): #encoder:代表编码器对象 #decoder:代表解码器对象 #source_embed:代表源数据的嵌入 #target_embed:代表目标数据的嵌入 #generator:代表输出部分类别生成器对象 super(EncoderDecoder,self).init() self.encoder=encoder self.decoder=decoder self.src_embed=source_embed self.tgt_embed=target_embed self.generator=generator def forward(self,source,target,source_mask,target_mask): #source:代表源数据 #target:代表目标数据 #source_mask:代表源数据的掩码张量 #target_mask:代表目标数据的掩码张量 return self.decode(self.encode(source,source_mask),source_mask, target,target_mask) def encode(self,source,source_mask): return self.encoder(self.src_embed(source),source_mask) def decode(self,memory,source_mask,target,target_mask): #memory:代表经历编码器编码后的输出张量 return self.decoder(self.tgt_embed(target),memory,source_mask,target) vocab_size=1000 d_model=512 encoder=en decoder=de source_embed=nn.Embedding(vocab_size,d_model) target_embed=nn.Embedding(vocab_size,d_model) generator=gen source=target=Variable(torch.LongTensor([[100,2,421,500],[491,998,1,221]])) source_mask=target_mask=Variable(torch.zeros(8,4,4)) ed=EncoderDecoder(encoder,decoder,source_embed,target_embed,generator ) ed_result=ed(source,target,source_mask,target_mask) print(ed_result) print(ed_result.shape)

最新推荐

recommend-type

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统
recommend-type

本户型为2层独栋别墅D026-两层-13.14&12.84米-施工图.dwg

本户型为2层独栋别墅,建筑面积239平方米,占地面积155平米;一层建筑面积155平方米,设有客厅、餐厅、厨房、卧室3间、卫生间1间、杂物间;二层建筑面积84平方米,设有卧室2间、卫生间1间、储藏间、1个大露台。 本户型外观造型别致大方,采光通风良好,色彩明快,整体平面布局紧凑、功能分区合理,房间尺度设计适宜,豪华大气,富有时代气息。
recommend-type

Java_带有可选web的开源命令行RatioMaster.zip

Java_带有可选web的开源命令行RatioMaster
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不