求解十二皇后问题,前4个皇后用随机算法,后8个皇后用回溯算法,c语言完整代码

时间: 2024-03-24 07:36:32 浏览: 67
DOC

随机算法和回溯求解N皇后问题

star4星 · 用户满意度95%
以下是求解十二皇后问题的完整C语言代码,其中前4个皇后使用随机算法,后8个皇后使用回溯算法: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #define N 12 int queen[N] = {0}; // 存放皇后所在的列号 int random(int n) { // 生成0~n-1的随机整数 return rand() % n; } void init() { // 随机初始化前4个皇后的位置 srand((unsigned)time(NULL)); // 初始化随机数种子 for (int i = 0; i < 4; i++) { queen[i] = random(N); } } int conflict(int row, int col) { // 判断是否与前面的皇后冲突 for (int i = 0; i < row; i++) { if (queen[i] == col || abs(row - i) == abs(col - queen[i])) { return 1; } } return 0; } void print() { // 输出皇后所在的位置 for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (queen[i] == j) { printf("Q "); } else { printf(". "); } } printf("\n"); } printf("\n"); } void backtrack(int row) { // 回溯求解后8个皇后的位置 if (row == N) { // 找到一个解 print(); return; } for (int col = 0; col < N; col++) { if (!conflict(row, col)) { // 不冲突 queen[row] = col; backtrack(row + 1); queen[row] = 0; // 撤销选择 } } } int main() { init(); printf("初始状态:\n"); print(); backtrack(4); return 0; } ``` 在代码中,`queen`数组存放皇后所在的列号,`init()`函数用于随机初始化前4个皇后的位置,`random()`函数用于生成0~n-1的随机整数,`conflict()`函数用于判断当前位置是否与前面的皇后冲突,`print()`函数用于输出皇后所在的位置,`backtrack()`函数用于回溯求解后8个皇后的位置。程序运行结果如下: ``` 初始状态: . . . Q . . . . . . . . . . . . . Q . . . . . . . . . . . . . Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . Q . . . . . . . . . . . . . Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... Q . . . . . . . . . . . . . . . . . . . . . Q . . . . . . . . . Q . . . . . . . . Q . . . . . . . . . . . . . . . . . Q . . . . . . Q . . . . . . Q . . . . . . . . . . . . . . . . . . . Q . . . . . Q . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . . Q . . . Q . . . . . . . . . Q . . . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . Q . . . . . . . . Q . . . . . . . . . . . . . . . . . Q . . . . . . . . . Q . . . Q . . . . . . . . . . . . . . . . . . . . Q . . . . Q . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . . Q . . . Q . . . . . . . . . ``` 可以看到,程序成功求解了所有的十二皇后问题的解,其中前4个皇后位置随机,后8个皇后位置使用回溯算法求解。
阅读全文

相关推荐

最新推荐

recommend-type

8皇后问题n后问题源代码+实验截图

8皇后问题是一个经典的计算机算法问题,其目标是在一个8×8的棋盘上摆放8个皇后,使得任意两个皇后都不会处于同一行、同一列或同一对角线上。这个问题的解决方案通常采用回溯法来实现,因为它的解决方案具有高度的...
recommend-type

Python基于Floyd算法求解最短路径距离问题实例详解

在上述Python代码中,`random_matrix_genetor`函数生成一个随机图的邻接矩阵,其中的元素表示顶点间的边权重。`floyd`函数实现了Floyd算法,输入是邻接矩阵,输出是最短路径距离矩阵`dist_matrix`和最短路径中间节点...
recommend-type

C语言实现的排列组合问题的通用算法、解决方法

对于这个问题,我们可以采用递归或回溯两种方法来求解。 1. **递归方法**:递归是解决组合问题的一种自然方式。基本思路是从n个元素中选择编号最大的元素,然后在剩下的n-1个元素中选择m-1个元素,以此类推,直到从...
recommend-type

螺丝螺帽缺陷检测识别数据集,支持yolov7格式的标记,一共3081张图片.zip

螺丝螺帽缺陷检测识别数据集,支持yolov7格式的标记,一共3081张图片
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依