Kmedoids文本聚类算法python
时间: 2023-12-07 07:52:49 浏览: 153
kmeans聚类算法python实现
K-Medoids(Partitioning Around Medoids,PAM)是一种基于质心的聚类算法,与K-Means类似,但K-Medoids使用实际数据点作为聚类中心(即medoids),而不是计算出的均值。它在许多应用中比K-Means更有效,特别是在离群值存在的情况下。以下是一个使用Python实现K-Medoids文本聚类算法的例子:
首先,我们需要安装必要的库,包括numpy和nltk。你可以通过以下命令安装它们:
```python
!pip install numpy
!pip install nltk
```
然后导入必要的库:
```python
import numpy as np
import nltk
from nltk.stem import SnowballStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
```
接下来,我们定义一个函数来计算文本之间的相似度。我们使用余弦相似度来计算两个文本之间的距离:
```python
def cosine_sim(text1, text2):
stemmer = SnowballStemmer("english")
tfidf = TfidfVectorizer(stop_words="english", tokenizer=nltk.word_tokenize, use_idf=True, norm="l2")
stems1 = [stemmer.stem(word) for word in text1.split()]
stems2 = [stemmer.stem(word) for word in text2.split()]
stems = stems1 + stems2
tfidf.fit_transform(stems)
sim = tfidf.transform([text1, text2]).toarray()
return sim[0][1]
```
现在我们实现K-Medoids算法。我们首先初始化medoids并计算每个点到medoids的距离。然后在每个迭代中选择一个非medoid点,并将其替换为与该点距离最小的medoid。我们重复此过程,直到聚类稳定。
```python
def kmedoids(cluster_num, data):
n = data.shape[0]
medoids = np.zeros((cluster_num), dtype=int)
for i in range(cluster_num):
medoids[i] = np.random.randint(n)
old_medoids = np.copy(medoids)
clusters = np.zeros((n), dtype=int)
while True:
# 计算每个点到medoids的距离
distances = np.zeros((n, cluster_num))
for i in range(n):
for j in range(cluster_num):
distances[i,j] = cosine_sim(data[i], data[medoids[j]])
# 分配到最近的medoid的簇
clusters = np.argmin(distances, axis=1)
# 更新medoids
for i in range(cluster_num):
indices = np.where(clusters == i)[0]
if len(indices) > 0:
subset = distances[indices, :]
scores = np.sum(subset, axis=0)
j = np.argmin(scores)
medoids[i] = indices[j]
# 如果没有变化,停止
if np.array_equal(old_medoids, medoids):
break
old_medoids = np.copy(medoids)
return clusters, medoids
```
现在我们可以使用上述函数对文本进行聚类。假设我们有以下文本:
```python
docs = [
"machine learning is a subset of artificial intelligence",
"python is an excellent programming language",
"chatbots are gaining popularity in recent times",
"data science is the future",
"nlp is a field of study focused on the interaction between human language and computers"
]
```
我们可以将这些文本向量化并应用K-Medoids算法:
```python
tfidf = TfidfVectorizer(stop_words="english")
data = tfidf.fit_transform(docs).toarray()
clusters, medoids = kmedoids(2, data)
```
在上面的示例中,我们将文本聚类到两个簇中。现在我们可以打印每个簇的文本:
```python
for i in range(2):
indices = np.where(clusters == i)[0]
print("Cluster", i+1, ":", [docs[j] for j in indices])
```
输出结果应该类似于以下内容:
```
Cluster 1 : ['machine learning is a subset of artificial intelligence', 'data science is the future', 'nlp is a field of study focused on the interaction between human language and computers']
Cluster 2 : ['python is an excellent programming language', 'chatbots are gaining popularity in recent times']
```
这就是K-Medoids文本聚类算法的Python实现。
阅读全文