已知一位空间内有20个节点(s1=0,s2=0.004, s3=,…s20=0.),每个节点包含3个特征值(u,b,midu),其中有5个节点的特征值已知,如何预测其余15个节点的特征值。 请基于tensorflow-gpu 1.14.0 写一段代码,使用图神经网络预测节点的未知特征值,即输入20个s作为节点,代表这20个s连接方式的邻接矩阵,以及其中5个已知节点的特征矩阵,将loss函数设置为预测值u、b、midu对s的导数的和,输出其余15个节点的u、b、midu。
时间: 2024-03-01 13:55:03 浏览: 133
好的,我来帮你写一段代码。
首先,我们需要导入 tensorflow 库和 numpy 库:
```python
import tensorflow as tf
import numpy as np
```
接着,我们定义一些超参数:
```python
num_nodes = 20
num_features = 3
num_known_nodes = 5
num_unknown_nodes = num_nodes - num_known_nodes
learning_rate = 0.01
epochs = 1000
```
然后,我们定义输入和输出:
```python
# 邻接矩阵,即节点之间的连接关系
adjacency_matrix = tf.placeholder(tf.float32, shape=[num_nodes, num_nodes])
# 已知节点的特征矩阵
known_features = tf.placeholder(tf.float32, shape=[num_known_nodes, num_features])
# 未知节点的特征矩阵
unknown_features = tf.Variable(tf.random_normal([num_unknown_nodes, num_features]))
```
接着,我们定义图神经网络模型:
```python
def gnn(adjacency_matrix, features):
hidden_layer = tf.layers.dense(features, 16, activation=tf.nn.relu)
output_layer = tf.layers.dense(hidden_layer, num_features, activation=None)
predicted_features = tf.matmul(adjacency_matrix, output_layer)
return predicted_features
predicted_features = gnn(adjacency_matrix, tf.concat([known_features, unknown_features], axis=0))
predicted_unknown_features = predicted_features[num_known_nodes:]
```
然后,我们定义损失函数和优化器:
```python
u_gradients = tf.gradients(predicted_unknown_features[:,0], adjacency_matrix)
b_gradients = tf.gradients(predicted_unknown_features[:,1], adjacency_matrix)
midu_gradients = tf.gradients(predicted_unknown_features[:,2], adjacency_matrix)
loss = tf.reduce_sum(u_gradients) + tf.reduce_sum(b_gradients) + tf.reduce_sum(midu_gradients)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
```
接下来,我们生成一些数据,即邻接矩阵和已知节点的特征矩阵:
```python
# 邻接矩阵
adjacency_matrix_data = np.zeros((num_nodes, num_nodes))
for i in range(num_nodes):
for j in range(i+1, num_nodes):
if np.random.rand() < 0.5:
adjacency_matrix_data[i,j] = 1
adjacency_matrix_data[j,i] = 1
# 已知节点的特征矩阵
known_features_data = np.random.rand(num_known_nodes, num_features)
```
最后,我们开始训练模型:
```python
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
_, loss_value = sess.run([optimizer, loss], feed_dict={
adjacency_matrix: adjacency_matrix_data,
known_features: known_features_data
})
if epoch % 100 == 0:
print("Epoch: {}, Loss: {}".format(epoch, loss_value))
predicted_unknown_features_data = sess.run(predicted_unknown_features, feed_dict={
adjacency_matrix: adjacency_matrix_data,
known_features: known_features_data
})
print("Predicted unknown features:")
print(predicted_unknown_features_data)
```
这样,我们就完成了图神经网络预测节点特征值的任务。
阅读全文