在R语言下,使用孪生网络计算文本相似度该怎么实现?能给出代码吗?
时间: 2024-05-15 14:20:09 浏览: 165
keras实现基于孪生网络的图片相似度计算方式
可以的,以下是使用孪生网络计算文本相似度的示例代码:
```R
library(keras)
library(tidytext)
# 准备数据
texts <- c("The quick brown fox jumps over the lazy dog",
"A quick brown dog jumps over the lazy fox",
"The quick brown cat jumps over the lazy dog",
"A quick brown dog jumps over the lazy cat")
data <- tibble(text = texts, id = 1:4)
# 文本清洗
data_clean <- data %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
# 构建词汇表
vocab <- data_clean %>%
distinct(word) %>%
arrange(word) %>%
mutate(id = row_number())
# 将文本转换为词汇表中的索引
data_indexed <- data_clean %>%
inner_join(vocab, by = "word") %>%
arrange(id.x)
# 构建模型
input1 <- layer_input(shape = c(1,), name = "input1")
input2 <- layer_input(shape = c(1,), name = "input2")
embedding_layer <- layer_embedding(
input_dim = nrow(vocab),
output_dim = 32,
input_length = 1
)
embedded1 <- embedding_layer(input1)
embedded2 <- embedding_layer(input2)
lstm_layer <- layer_lstm(units = 32)
output1 <- lstm_layer(embedded1)
output2 <- lstm_layer(embedded2)
distance_layer <- layer_lambda(function(x) {
abs(x[[1]] - x[[2]])
})
distance <- distance_layer(list(output1, output2))
output <- layer_dense(units = 1, activation = "sigmoid")(distance)
model <- keras_model(inputs = c(input1, input2), outputs = output)
model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")
)
# 训练模型
train_pairs <- data_indexed %>%
expand_grid(id.x = id, id.y = id) %>%
filter(id.x != id.y)
train_pairs$label <- ifelse(train_pairs$id.x == train_pairs$id.y, 1, 0)
train_pairs <- train_pairs %>%
select(-id.x, -id.y) %>%
mutate_all(as.matrix)
model %>% fit(
list(train_pairs[,1], train_pairs[,2]),
train_pairs[,3],
epochs = 10,
batch_size = 16
)
# 计算相似度
test_pairs <- data_indexed %>%
expand_grid(id.x = id, id.y = id) %>%
filter(id.x != id.y)
test_pairs <- test_pairs %>%
select(-id.x, -id.y) %>%
mutate_all(as.matrix)
test_pairs$score <- model %>% predict(list(test_pairs[,1], test_pairs[,2]))
test_pairs
```
在这个示例中,我们使用了 R 语言中的 Keras 库来构建孪生网络模型,使用 LSTM 层计算两个文本之间的距离。我们将数据分为训练集和测试集,并使用训练集来训练模型,然后使用测试集来计算文本之间的相似度得分。
阅读全文