详细举例说明swin-transformer和VIT的编码器结构有什么不同
时间: 2023-11-27 21:06:03 浏览: 98
Swin Transformer 和 VIT 的编码器结构有以下不同:
1. 分块策略不同:VIT采用了Patch-based的方式,将输入图像切分成小的块,每个小块都被编码成一个固定长度的向量进行处理。而Swin Transformer使用了自适应分块策略,将图像分成多个大小不同的块,并通过非重叠的方式进行划分,以适应不同尺寸的图像。
2. 特征提取方式不同:VIT使用基于自注意力机制的Transformer来提取特征,而Swin Transformer除了使用自注意力机制外,还使用了2D卷积来提取特征。
3. 特征通道数不同:VIT中的每个块被编码成一个固定长度的向量,向量维度通常比较小,例如16、32或64。而Swin Transformer中的每个块使用更多的通道来表示,通常在100到200之间。
4. 缩放策略不同:在VIT中,通过在Transformer的编码器和解码器之间添加多个跨层连接来处理多尺度信息。而在Swin Transformer中,使用了多尺度通道注意力机制来融合不同尺度的特征。
举例来说,VIT的编码器结构可以看作是一个由多个Transformer模块组成的堆叠,每个Transformer模块由多个自注意力层和前馈神经网络层组成。每个图像块都会被嵌入成一个定长的向量,作为输入传递给Transformer模块。
而Swin Transformer的编码器结构由多个阶段组成,每个阶段包含多个Swin Transformer块,每个块由一个2D卷积层和若干个带有自注意力机制的Transformer块组成。每个图像块都会被编码为一个多通道特征图,特征通道数随着阶段的增加而增加。在多尺度上,Swin Transformer使用自适应的非重叠区域划分策略来处理不同尺度的图像块。
总之,Swin Transformer 和 VIT 的编码器结构在分块策略、特征提取方式、特征通道数和缩放策略等方面有所不同,这些差异也直接影响了它们在图像处理任务中的表现。
阅读全文