best_params, best_fitness = optimizer.optimize(fitness_function, iters=50, bounds=bounds)Traceback (most recent call last): File "F:\KXZB\PSO_RNN.py", line 165, in <module> best_params, best_fitness = optimizer.optimize(fitness_function, iters=50, bounds=bounds) File "E:\Envs\tensorflow\lib\site-packages\pyswarms\single\global_best.py", line 209, in optimize self.swarm.current_cost = compute_objective_function(self.swarm, objective_func, pool=pool, **kwargs) File "E:\Envs\tensorflow\lib\site-packages\pyswarms\backend\operators.py", line 239, in compute_objective_function return objective_func(swarm.position, **kwargs) TypeError: fitness_function() got an unexpected keyword argument 'bounds'
时间: 2023-11-11 16:05:40 浏览: 186
这个错误提示是在使用`pyswarms`库进行粒子群优化时出现的。这个错误提示告诉我们`fitness_function()`函数不支持`bounds`参数。
这个错误可以通过在`fitness_function()`函数中删除对`bounds`参数的引用来解决。如果你需要在`fitness_function()`函数中使用`bounds`参数,你可以将它作为全局变量或者在`optimize()`函数中传递它。
例如,如果你将`bounds`作为全局变量,你可以这样修改代码:
```python
# 定义全局变量 bounds
bounds = (0, 1)
# 定义 fitness_function()
def fitness_function(x, bounds=bounds):
# 在函数中使用 bounds
...
# 运行 optimize() 函数
best_params, best_fitness = optimizer.optimize(fitness_function, iters=50)
```
如果你想在`optimize()`函数中传递`bounds`参数,你可以这样修改代码:
```python
# 定义 fitness_function()
def fitness_function(x, bounds):
# 在函数中使用 bounds
...
# 定义 bounds
bounds = (0, 1)
# 运行 optimize() 函数并传递 bounds
best_params, best_fitness = optimizer.optimize(fitness_function, iters=50, bounds=bounds)
```
这样做可以解决这个错误。
阅读全文