apriori算法python代码实现
时间: 2023-10-13 19:18:59 浏览: 89
Apriori算法的实现的python代码.doc
5星 · 资源好评率100%
下面是Apriori算法的Python实现:
```python
def loadDataSet():
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return map(frozenset, C1)
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt: ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k): #creates Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataSet, minSupport = 0.5):
C1 = createC1(dataSet)
D = map(set, dataSet)
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
dataSet = loadDataSet()
L, suppData = apriori(dataSet, minSupport=0.5)
print(L)
print(suppData)
```
在这个代码中,我们首先定义了一个数据集。然后我们使用`createC1()`函数创建了初始候选项集。接下来,我们使用`scanD()`函数计算支持度,并得到频繁项集。接着使用`aprioriGen()`函数生成新的候选项集,并使用它计算新的支持度。最后,我们使用`apriori()`函数得到所有的频繁项集以及他们的支持度。
阅读全文