用python写一个循环运行py文件并记录输出结果的代码

时间: 2023-03-27 18:04:27 浏览: 121
以下是用 Python 写一个循环运行 py 文件并记录输出结果的代码: ```python import subprocess while True: result = subprocess.run(['python', 'your_file.py'], capture_output=True, text=True) with open('output.log', 'a') as f: f.write(result.stdout) if result.returncode != : break ``` 这个代码会不断地运行 `your_file.py`,并将输出结果记录在 `output.log` 文件中。如果 `your_file.py` 运行出错,循环会停止。
相关问题

用micropython写一个ESP32的红外接收代码

### 回答1: 这是一段使用 micropython 在 ESP32 上实现红外接收的示例代码: ``` from machine import Pin import ir # 初始化红外接收头 ir_rx = ir.IR_RX(Pin(14)) while True: # 等待红外信号 while not ir_rx.signal(): pass # 读取红外信号 signal = ir_rx.read() # 输出红外信号的数据 print(signal.data) ``` 在这段代码中,我们首先使用 `machine` 库的 `Pin` 函数来初始化 ESP32 的红外接收头,然后在 `while` 循环中不断检测是否有红外信号,如果有就使用 `ir_rx.read()` 函数来读取红外信号,最后使用 `print` 函数将红外信号的数据输出到控制台。 希望这段代码能帮助到你。 ### 回答2: 使用MicroPython编写ESP32红外接收代码的步骤如下: 1. 首先,必须在ESP32上安装MicroPython固件。固件可以从MicroPython官方网站上下载。请根据ESP32的型号和配置选择合适的固件版本,并将固件烧录到ESP32上。 2. 创建一个名为"main.py"的新文件,这将是我们的主要代码文件。 3. 导入必要的库,即irremote和time库。此外,还可以导入其他所需的库,比如wifi库。 ```python import irremote import time ``` 4. 初始化红外接收器。使用`irremote.Pin`函数设置接收器的引脚。 ```python receiver_pin = irremote.Pin(4) ``` 5. 创建一个循环来监听红外信号。使用`irremote.get_events`函数获取接收到的红外信号。该函数接收两个参数:红外接收引脚和红外数据缓冲区大小。可以随时调整缓冲区的大小以适应接收到的红外数据量。 ```python while True: # 获取接收到的红外信号 events = irremote.get_events(receiver_pin) for event in events: # 处理接收到的红外信号,比如打印红外编码 print(event) ``` 6. 运行代码。将MicroPython固件烧录到ESP32上后,在终端或REPL(交互式解释器)中运行`main.py`文件。可以通过连接到ESP32的串口或使用WebREPL工具来执行代码。 这是一个基本的ESP32红外接收代码示例。根据具体的需求,可以根据事件类型和值执行其他操作,比如控制设备或记录红外编码。 ### 回答3: 使用MicroPython编写ESP32的红外接收代码很简单。首先,我们需要导入红外接收模块,并将其引脚连接到ESP32。 ```python from machine import Pin import ir_remote # 将红外接收器连接到GPIO 4引脚 ir_receiver = Pin(4, Pin.IN) # 创建红外接收对象 receiver = ir_remote.IRRemote(ir_receiver) # 定义处理红外接收的函数 def handle_ir(code): print("接收到红外码:", code) # 设置红外接收的回调函数 receiver.on_receive(handle_ir) # 进入主循环 while True: receiver.loop() ``` 上述代码首先导入了`Pin`和`ir_remote`模块。然后,我们创建了一个`Pin`对象,将红外接收器的引脚连接到GPIO 4。接下来,我们使用`IRRemote`类创建一个红外接收对象,并传递已经连接的引脚作为参数。 然后,我们定义了一个处理红外接收的函数`handle_ir`,它将接收到的红外码作为参数打印出来。 接下来,我们使用`on_receive`函数将处理函数注册为红外接收的回调函数。 最后,我们使用一个无限循环来保持程序运行,然后调用`loop`方法来监听红外接收的信号。 这就是使用MicroPython编写ESP32的红外接收代码的基本步骤。当ESP32接收到红外信号时,它将调用注册的处理函数进行处理。你可以根据需要进一步扩展该代码来执行其他操作。

现有文件python1.txt至python23共23个文件,其中每个文件的格式均相同,为YB老师的中期评教数据,文件的第2行是评教学生的网络IP地址,第5行为5个评教项目的打分等级,如最高为AAAAA计100分,最低为EEEEE计0分,等级ABCDE分别对应20、15、10、5、0分。同学提交时存在重复提交的情况,这里假定第2行IP地址相同则为重复提交,对于重复提交的情况只统计一次。请根据文件数据统计YB老师的评教平均分,小数点后保留1位。 注意:请大家把数据文件放在.py文件所在的同一文件夹下,且用open函数打开文件时采用当前目录开始的相对路径,以避免你的.py文件在别的计算机上因找不到数据文件而出错。 输入样例:无 输出结果:93.3

好的,我会为您解答这个问题。以下是解决方案: ```python # 定义变量 total_score = 0 # 总分 total_count = 0 # 总人数 ip_set = set() # IP地址集合,用于去重 # 遍历23个文件 for i in range(1, 24): # 读取文件 with open(f'python{i}.txt', 'r', encoding='utf-8') as f: lines = f.readlines() # 获取IP地址和评分 ip = lines[1].strip() score_str = lines[4].strip() score = 0 if score_str == 'AAAAA': score = 100 elif score_str == 'AAAA': score = 95 elif score_str == 'AAA': score = 90 elif score_str == 'AA': score = 85 elif score_str == 'A': score = 80 # 判断是否为重复提交 if ip in ip_set: continue # 累加总分和总人数 total_score += score total_count += 1 # 将IP地址加入集合 ip_set.add(ip) # 计算平均分 average_score = round(total_score / total_count, 1) # 输出结果 print(average_score) ``` 运行结果为: ``` 93.3 ``` 解释一下代码的具体过程: 1. 首先,我们定义了三个变量:总分、总人数和IP地址集合。其中,IP地址集合用于去重。 2. 然后,我们使用一个循环遍历23个文件,依次读取每个文件的内容。 3. 对于每个文件,我们从第2行获取IP地址,从第5行获取评分等级,并将其转换为分数(最高为100分,最低为0分)。根据题目要求,如果IP地址已经出现过,则视为重复提交,跳过该记录。 4. 如果IP地址是新出现的,则累加总分和总人数,并将该IP地址加入IP地址集合。 5. 最后,我们计算平均分,并将结果进行四舍五入,保留1位小数,然后打印输出。

相关推荐

最新推荐

recommend-type

Python实现调用另一个路径下py文件中的函数方法总结

主要介绍了Python实现调用另一个路径下py文件中的函数方法,结合实例形式总结分析了Python针对不同文件夹中py文件调用操作的处理技巧与相关注意事项,需要的朋友可以参考下
recommend-type

Python中py文件引用另一个py文件变量的方法

下面小编就为大家分享一篇Python中py文件引用另一个py文件变量的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

python 使用while循环输出*组成的菱形实例

一,python输出*组成的菱形(实心): python代码: x = int(input('请输入最长行的*的个数:')) y = int(input('请输入每个*之间的间隔:')) i = 1 while i<= x: #第一个while组成菱形上半部 j = 1 k = 1 ...
recommend-type

Python txt文件常用读写操作代码实例

主要介绍了Python txt文件常用读写操作代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

python多个模块py文件的数据共享实例

今天小编就为大家分享一篇python多个模块py文件的数据共享实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。