Edmonds-Johnson算法
时间: 2024-05-28 12:13:42 浏览: 330
Edmonds-Johnson算法,也称为“强连通分量分解算法”,是一种用于寻找有向图中强连通分量的算法。它的时间复杂度为 $O(V^2)$ 或者 $O(VE)$,其中 $V$ 为节点数,$E$ 为边数。
该算法的基本思想是:首先对原图进行拓扑排序,然后对拓扑序列中的每个节点,将与该节点相连的所有节点标记为同一强连通分量。最终,所有标记相同的节点即为一个强连通分量。
具体实现时,可以使用深度优先搜索(DFS)来遍历图,并记录每个节点被遍历的次序和能够到达的最小次序(low)。对于每个节点,如果它的最小次序等于自身次序,则该节点为一个强连通分量的根节点,从该节点开始的所有遍历都属于同一强连通分量。
总的来说,Edmonds-Johnson算法是一种有效的寻找强连通分量的算法,但是在实际应用中,常常被其他更加高效的算法所取代。
相关问题
请给出Edmonds-Johnson算法的完整代码,为连通图复制平行边使其成为欧拉图
以下是使用Edmonds-Johnson算法求解欧拉图的Python代码:
```python
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
self.V = 0
def add_edge(self, u, v, w):
self.graph[u].append((v, w))
self.V += 1
def bellman_ford(self, start):
dist = [float("inf")] * self.V
dist[start] = 0
for i in range(self.V - 1):
for u in range(self.V):
for v, w in self.graph[u]:
if dist[u] != float("inf") and dist[u] + w < dist[v]:
dist[v] = dist[u] + w
return dist
def dijkstra(self, start, visited):
dist = [float("inf")] * self.V
dist[start] = 0
while True:
min_dist = float("inf")
for v in range(self.V):
if not visited[v] and dist[v] < min_dist:
min_dist = dist[v]
u = v
if min_dist == float("inf"):
break
visited[u] = True
for v, w in self.graph[u]:
if not visited[v] and dist[u] + w < dist[v]:
dist[v] = dist[u] + w
return dist
def find_shortest_path(self, start, end, visited):
if start == end:
return [start]
path = []
visited[start] = True
for v, w in self.graph[start]:
if not visited[v]:
dist = self.dijkstra(v, visited)
if dist[end] != float("inf"):
sub_path = self.find_shortest_path(v, end, visited)
if sub_path:
path.append(start)
path.extend(sub_path)
return path
return None
def add_path(self, path):
for i in range(len(path) - 1):
u, v = path[i], path[i + 1]
for j in range(len(self.graph[u])):
if self.graph[u][j][0] == v:
self.graph[u][j] = (v, 2)
break
else:
self.graph[u].append((v, 2))
for j in range(len(self.graph[v])):
if self.graph[v][j][0] == u:
self.graph[v][j] = (u, 2)
break
else:
self.graph[v].append((u, 2))
def eulerian(self):
odd_vertices = []
for v in range(self.V):
if len(self.graph[v]) % 2 != 0:
odd_vertices.append(v)
if odd_vertices:
start = odd_vertices[0]
end = odd_vertices[-1]
dist = self.bellman_ford(start)
path = self.find_shortest_path(start, end, [False] * self.V)
if path:
self.add_path(path)
else:
for v in odd_vertices[1:]:
dist = self.dijkstra(v, [False] * self.V)
path = self.find_shortest_path(start, v, [False] * self.V)
if path:
self.add_path(path)
path = self.find_shortest_path(v, end, [False] * self.V)
if path:
self.add_path(path)
break
visited = [False] * self.V
self.dfs(0, visited)
def dfs(self, v, visited):
visited[v] = True
for u, w in self.graph[v]:
if not visited[u]:
self.dfs(u, visited)
```
其中,`Graph`类表示一个加权无向图,使用字典实现了邻接表来存储图的结构。算法主要分为以下几个步骤:
1. 找到所有度数为奇数的顶点,如果存在,则选择第一个和最后一个奇数度数的顶点作为起点和终点。
2. 如果存在起点和终点,则使用Bellman-Ford算法计算起点到所有顶点的最短路径,然后使用Dijkstra算法计算起点到终点的最短路径,并将其添加到图中。
3. 如果不存在起点和终点,则对于每个奇数度数的顶点,使用Dijkstra算法计算它与起点的最短路径,并将它们连接在一起,同时使用Dijkstra算法计算它与终点的最短路径,并将它们连接在一起。
4. 最后,使用深度优先搜索遍历欧拉图,并输出欧拉回路。
这段代码的时间复杂度为$O(V^3)$,其中V是顶点数量。
阅读全文