sigmoid和softmax
时间: 2023-09-24 14:07:13 浏览: 103
藏经阁-Softmax Function Vs Sigmoid Fu.pdf
sigmoid和softmax都是常用的激活函数,主要用于在神经网络中进行分类任务。
sigmoid函数是一种将实数映射到0到1之间的函数,其公式为f(x) = 1 / (1 + exp(-x))。它主要用于二分类任务,将输入的实数转换为概率值,表示为属于正类的概率。sigmoid函数的特点是输出值在0和1之间,可以对输入进行压缩,同时保留了输入之间的大小关系。因此,sigmoid函数可以用于判断不同类别的元素,并且区分属于同一类的元素谁更属于该类。然而,sigmoid函数在输入趋近于正无穷或负无穷时,输出值趋近于0或1,这可能导致梯度消失的问题,影响了反向传播的效果。
softmax函数是一种将实数向量映射到概率分布的函数,其公式为softmax(x) = exp(x) / sum(exp(x))。它主要用于多分类任务,将输入的实数向量转换为一个概率分布,表示为属于每个类别的概率。softmax函数的特点是将输入进行归一化,使得所有输出概率之和为1。因此,softmax函数可以用于将输入分类到不同的类别,并且可以同时处理多个类别之间的关系。softmax函数在计算上比sigmoid函数复杂一些,因为它需要对输入进行指数运算和求和运算。
总结起来,sigmoid函数适用于二分类任务,softmax函数适用于多分类任务。sigmoid函数将实数映射到0到1之间,而softmax函数将实数向量映射到概率分布。两者都可以用于神经网络中的激活函数,用于在分类任务中转换输入为概率值或概率分布。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [softmax与sigmoid函数的理解](https://blog.csdn.net/qq_31267769/article/details/108203560)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文