x_note = [] x_offset = [] for press_time_dict in midi_list: last_offset = Fraction(0, 1) sorted_keys = sorted(press_time_dict.keys(), key=lambda t: float(Fraction(t))) for i, key in enumerate(sorted_keys): note_arr = np.zeros(shape=(len(total_keys), len(duration_keys)), dtype=np.float32) for note, duration in press_time_dict[key]: note_arr[total_keys.index(note), duration_keys.index(duration)] = 1. note_arr[np.max(note_arr, axis=-1) == 0., duration_keys.index('0')] = 1. cur_offset = Fraction(key) x_offset.append(str(cur_offset - last_offset)) last_offset = cur_offset x_note.append(note_arr) x_note = np.stack(x_note, axis=0) offset_keys = list(set(x_offset)) x_offset_idx = np.array([offset_keys.index(offset_type) for offset_type in x_offset]) x_offset = np.eye(len(offset_keys), dtype=np.int32)[x_offset_idx] x_offset = np.array(x_offset, dtype=np.float32) np.save("notes_array.npy", x_note) np.save("offsets_array.npy", x_offset) np.save("note_keys_dict.npy", total_keys) np.save("note_offsets_dict.npy", offset_keys) np.save("note_durations_dict.npy", duration_keys)
时间: 2024-03-30 19:34:20 浏览: 221
对pandas中to_dict的用法详解
这段代码的作用是将`midi_list`列表中的所有键值对转换为神经网络的输入格式。具体来说,它将每个键值对转换为一个二维数组,其中每行表示一个音符,每列表示一个持续时间。对于每个键值对,它还将其对应的偏移量记录在`x_offset`列表中。
在代码的第一部分中,它遍历`midi_list`中的每个键值对,并按照键的顺序将其排序。然后,它遍历排序后的键,并将其转换为一个二维数组。对于每个音符,它使用`total_keys`和`duration_keys`中的索引来确定其在数组中的位置,并将该位置的值设置为1。如果一个音符在该键值对中没有出现,则该位置的值为0。对于每个键值对,它还将持续时间为0的音符设置为1,以使这些音符可以被正确地处理。
在代码的第二部分中,它使用`x_offset`列表中的偏移量将每个键值对与其之前的键值对分开。然后,它将`x_note`和`x_offset`转换为NumPy数组,并将它们保存在`.npy`文件中。最后,它将`total_keys`、`offset_keys`和`duration_keys`保存为`.npy`文件,以便在模型训练过程中使用。
阅读全文