FCN(全卷积网络),CNN(卷积神经网络),RNN(循环神经网络),DeepLab系列,SegNet,U-Net
时间: 2023-11-18 16:43:22 浏览: 142
这些都是常见的神经网络架构,主要用于图像分割或语义分割任务。其中:
- FCN(全卷积网络):将传统卷积神经网络的全连接层替换成卷积层,可以对任意大小的输入进行像素级别的分类和分割。
- CNN(卷积神经网络):主要用于图像识别和分类任务,通过卷积操作提取图像特征,并通过池化操作降低特征维度。
- RNN(循环神经网络):主要用于序列数据的处理,通过循环结构可以传递历史信息,对于自然语言处理和语音识别等任务有着广泛应用。
- DeepLab系列:提出了空洞卷积和多尺度金字塔池化等技术,用于高效地进行图像分割。
- SegNet:通过编码器-解码器结构进行像素级别的语义分割,其中解码器使用了最大池化的位置信息进行上采样。
- U-Net:同样采用编码器-解码器结构,但在解码器部分加入了跳跃连接(skip connection),可以更好地保留低层次的特征。主要用于医学图像分割等任务。
阅读全文