PERCLOS的python代码
时间: 2023-10-12 15:14:58 浏览: 239
PERCLOS,即眼睑闭合程度百分比(Percentage of Eye Closure over Time),是一种用于评估疲劳程度和注意力水平的指标。以下是使用Python计算PERCLOS的示例代码:
```python
import cv2
import dlib
import numpy as np
# 加载dlib的面部检测器
detector = dlib.get_frontal_face_detector()
# 加载dlib的眼睛检测器
predictor = dlib.shape_predictor('path/to/shape_predictor_68_face_landmarks.dat')
# 定义常量
EAR_THRESH = 0.2 # EAR阈值
FRAME_THRESH = 2 # 连续帧数阈值
# 初始化变量
frame_count = 0 # 连续帧数
ear_list = [] # EAR值列表
# 读取视频
cap = cv2.VideoCapture('path/to/video.mp4')
while cap.isOpened():
# 读取一帧图像
ret, frame = cap.read()
if not ret:
break
# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测面部区域
faces = detector(gray, 0)
# 遍历面部区域
for face in faces:
# 检测眼睛区域
landmarks = predictor(gray, face)
left_eye = np.array([(landmarks.part(i).x, landmarks.part(i).y) for i in range(36, 42)])
right_eye = np.array([(landmarks.part(i).x, landmarks.part(i).y) for i in range(42, 48)])
# 计算EAR值
left_ear = eye_aspect_ratio(left_eye)
right_ear = eye_aspect_ratio(right_eye)
ear = (left_ear + right_ear) / 2.0
# 绘制眼睛区域
cv2.polylines(frame, [left_eye], True, (0, 255, 0), 1)
cv2.polylines(frame, [right_eye], True, (0, 255, 0), 1)
# 判断EAR值是否小于阈值
if ear < EAR_THRESH:
frame_count += 1
else:
# EAR值大于阈值,重置连续帧数
if frame_count >= FRAME_THRESH:
ear_list.append(frame_count)
frame_count = 0
# 显示图像
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
# 计算PERCLOS值
perclos = sum(ear_list) / len(ear_list) / FRAME_THRESH
print('PERCLOS:', perclos)
# 计算EAR值
def eye_aspect_ratio(eye):
# 计算距离
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
# 计算EAR值
ear = (A + B) / (2.0 * C)
return ear
```
需要注意的是,上述代码中需要使用dlib库进行面部和眼睛检测,因此需要预先安装该库并下载面部检测器和眼睛检测器的数据文件。
阅读全文