使用C语言。标题:构造合式公式的真值表 时间限制:1 内存限制:256 问题描述:给出任意变元(不超过4个变元,如:P,Q,S,R)的合式公式。构造该合式公式的 真值表。 输入说明:需要用特定的字符串将联结词表示(如~可以表示非,->表示蕴涵,<->表示等价, /表示析取,/\表示合取,中间不加任何空格),输入合式公式。 输出说明:构造真值表有如下约定: ① 命题变元按字典序排列; ② 对公式的每个解释,以二进制数从小到大或者从大到小顺序列出; ③ 若公式复杂,可先列出各子公式的真值(若有括号,则应从里层向外层展开),最后列 出所给公式的真值; ④ 对输出时只输出变元和最终表达式。 输入样例:~P/Q/\R 输出样例: P Q R (~P/Q)/\R 00 0 0 00 1 1 01 0 0 01 1 1 10 0 0 10 1 0 11 0 0 1 1 1 1 输入方式:控制台 判定规则:忽略首尾空白、忽略空行、忽略大小写、数据之间只保留一个空白。

时间: 2024-03-07 16:47:19 浏览: 35
以下是使用C语言实现构造合式公式的真值表的代码,主要思路是使用递归函数实现后缀表达式的计算,并遍历所有可能的变量取值组合。 ```c #include <stdio.h> #include <stdbool.h> #include <string.h> #include <stdlib.h> #define MAX_VAR_NUM 4 #define MAX_FORMULA_LEN 100 // 全局变量 char var[MAX_VAR_NUM]; // 变量名数组 int var_num; // 变量个数 char formula[MAX_FORMULA_LEN]; // 合式公式 char postfix[MAX_FORMULA_LEN]; // 后缀表达式 int postfix_len; // 后缀表达式长度 // 判断是否为操作符 bool is_operator(char c) { return c == '~' || c == '/' || c == '\\' || c == '-' || c == '<' || c == '>'; } // 判断操作符的优先级 int operator_priority(char c) { if (c == '~') { return 5; } else if (c == '/') { return 4; } else if (c == '\\') { return 3; } else if (c == '-') { return 2; } else if (c == '<' || c == '>') { return 1; } else { return 0; } } // 将中缀表达式转换为后缀表达式 void infix_to_postfix() { int formula_len = strlen(formula); postfix_len = 0; char stack[MAX_FORMULA_LEN]; int top = -1; for (int i = 0; i < formula_len; i++) { char c = formula[i]; if (!is_operator(c)) { postfix[postfix_len++] = c; } else { while (top >= 0 && operator_priority(stack[top]) > operator_priority(c)) { postfix[postfix_len++] = stack[top--]; } if (c == '>') { if (formula[i+1] == '-') { i++; c = '<'; } } stack[++top] = c; } } while (top >= 0) { postfix[postfix_len++] = stack[top--]; } } // 计算后缀表达式的值 bool calculate_postfix(int *var_value) { int stack[MAX_FORMULA_LEN]; int top = -1; for (int i = 0; i < postfix_len; i++) { char c = postfix[i]; if (!is_operator(c)) { int index = 0; for (int j = 0; j < var_num; j++) { if (c == var[j]) { index = j; break; } } stack[++top] = var_value[index]; } else { if (c == '~') { stack[top] = !stack[top]; } else { bool b2 = stack[top--]; bool b1 = stack[top--]; if (c == '/') { stack[++top] = b1 || b2; } else if (c == '\\') { stack[++top] = b1 && b2; } else if (c == '-') { stack[++top] = !b1 || b2; } else if (c == '<') { stack[++top] = !(b1 ^ b2); } } } } return stack[0]; } // 构造真值表 void construct_truth_table() { int var_value[MAX_VAR_NUM]; int table_size = 1 << var_num; // 2的var_num次方 printf("%s", var); printf("\t%s\n", postfix); for (int i = 0; i < table_size; i++) { // 生成变量取值组合 for (int j = 0; j < var_num; j++) { var_value[j] = (i >> (var_num - 1 - j)) & 1; printf("%d\t", var_value[j]); } // 计算公式的值 printf("%d\n", calculate_postfix(var_value)); } } int main() { // 输入合式公式 printf("请输入合式公式:\n"); scanf("%s", formula); // 计算变量个数和变量名 var_num = 0; memset(var, 0, sizeof(var)); int formula_len = strlen(formula); for (int i = 0; i < formula_len; i++) { if (!is_operator(formula[i])) { bool found = false; for (int j = 0; j < var_num; j++) { if (var[j] == formula[i]) { found = true; break; } } if (!found) { var[var_num++] = formula[i]; } } } // 将中缀表达式转换为后缀表达式 infix_to_postfix(); // 构造真值表 construct_truth_table(); return 0; } ```

相关推荐

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

《C语言实现一元多项式加减法运算的链表方法》 在计算机科学中,数据结构和算法是解决问题的基础工具。本篇文章将探讨如何使用C语言通过链表实现一元多项式的加减法运算。这是一道适合初学者的链表实践题目,通过这...
recommend-type

单片机:c语言实现秒表计数(按键开始,结束,重置)

实现秒表计数功能,使用定时器和外部中断实现。8号按键代表计时开始/结束,C号按键代表重置为0,为了演示方便,这里上限定为15秒。
recommend-type

单片机C语言程序设计:定时器控制数码管动态显示

单片机C语言程序设计:定时器控制数码管动态显示 单片机C语言程序设计是指使用C语言开发单片机应用程序的技术。单片机是一种微型计算机,广泛应用于工业控制、家电、汽车电子等领域。本文将讨论单片机C语言程序设计...
recommend-type

单片机C语言程序设计:8X8LED 点阵显示数字

名称:按键控制 8X8LED 点阵屏显示图形 说明:每次按下 K1 时,会使 8X8LED点阵屏循环显示不同图形。本例同时使用外部中断和定时中断。
recommend-type

单片机C语言程序设计:T0控制LED实现二进制计数

说明:本例对按键的计数没有使用查询法,没有使用外部中断函数,没有使用定时或计数中断函数。而是启用了计数器,连接在 T0 引脚的按键每次按下时,会使计数寄存器的值递增,其值通过 LED以二进制形式显示
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。