hive on spark性能调优

时间: 2023-11-11 13:59:14 浏览: 208
Hive on Spark 是将 Hive 引擎与 Spark 引擎结合起来,以提高 Hive 查询的性能。以下是一些 Hive on Spark 的性能调优技巧: 1. 调整 Spark 的内存分配:可以通过调整 Spark 的 executor 内存和 driver 内存来优化 Hive on Spark 的性能。可以通过设置 spark.executor.memory 和 spark.driver.memory 参数来调整内存分配。 2. 调整 Spark 的并行度:可以通过调整 Spark 的并行度来优化 Hive on Spark 的性能。可以通过设置 spark.sql.shuffle.partitions 参数来调整并行度。 3. 启用动态分区:启用动态分区可以减少数据移动和复制,从而提高查询性能。可以通过设置 hive.exec.dynamic.partition.mode 参数来启用动态分区。 4. 启用压缩:启用压缩可以减少磁盘 I/O,从而提高查询性能。可以通过设置 hive.exec.compress.output 和 hive.exec.compress.intermediate 参数来启用压缩。 5. 使用 ORC 或 Parquet 格式:使用 ORC 或 Parquet 格式可以提高查询性能,因为它们支持列式存储和压缩。可以通过设置 hive.default.fileformat 参数来指定默认的文件格式。
相关问题

hive on spark 性能调优

### 回答1: Hive on Spark 的性能调优主要包括以下几个方面: 1. 资源调优:可以通过调整 Spark 的 executor 内存、CPU 核数等参数来优化资源的使用效率,提高作业的并发度和执行速度。 2. 数据倾斜处理:在数据倾斜的情况下,可以通过使用 Spark 的 shuffle 操作的优化策略,如使用 map-side 聚合、使用随机前缀等方式来解决数据倾斜问题。 3. 数据压缩:可以使用 Hive on Spark 提供的压缩功能,将数据压缩后存储,可以减少磁盘 I/O,提高数据读写速度。 4. 数据分区:可以通过对数据进行分区,提高查询效率,减少数据扫描量。 5. 数据倾斜检测:可以使用 Spark 的一些工具,如 Spark Job Server、Spark Web UI 等来检测数据倾斜情况,及时发现问题并进行处理。 6. 数据倾斜解决方案:可以使用 Spark 的一些解决方案,如使用 Spark SQL 的动态分桶、使用 Spark Streaming 的动态负载均衡等方式来解决数据倾斜问题。 总之,对于 Hive on Spark 的性能调优,需要综合考虑资源、数据倾斜、数据压缩、数据分区等多个方面,根据具体情况采取相应的优化策略,以提高作业的执行效率和性能。 ### 回答2: Hive on Spark 是一种在 Hadoop 生态系统中运行 Hive 查询的方式,它利用 Spark 引擎来执行 Hive 查询,并提供了更高的性能和更佳的易用性。然而,为了获得最佳性能,需要进行一些调优。 一、设置 Spark Executor 内存 默认情况下,Spark 的 Executor 分配的内存为 1GB,在大型数据集上运行 Hive 查询时,此值可能过低。为了获得更好的性能,应适当增加每个 Executor 的内存,以确保查询可以在内存中执行而不需要进行磁盘交换。可以通过在创建 SparkContext 时设置 spark.executor.memory 属性来设置 Executor 的内存大小,例如: spark-submit --master yarn --conf spark.executor.memory=4g --class com.example.MyApp myapp.jar 二、设置 Spark Executor 数量 默认情况下,Spark 使用的 Executor 数量等于集群中的可用 CPU 核数,但是在 Hive on Spark 中,因为数据在 HDFS 上存储,大多数任务都是 IO 密集型的,所以可以适当减少 Executor 数量,以避免资源竞争。可以通过在创建 SparkConf 对象时设置 spark.executor.instances 属性来设置 Executor 的数量,例如: SparkConf conf = new SparkConf().setAppName("myApp").setMaster("yarn").set("spark.executor.instances", "4"); 三、调整数据存储格式 Hive on Spark 支持多种数据存储格式,例如 Parquet、ORC 和 Avro 等。这些格式不仅可以提高查询性能,还可以节省存储空间。对于 Hive on Spark 操作,Parquet 格式是最理想的,因为它可以实现更高的压缩率,并且可以提供更快的 I/O 性能。 四、启用 Vectorized Execution Hive on Spark 还支持向量化执行(Vectorized Execution),它可以将典型的行式操作转换为列式操作,从而提高查询性能。由于列式操作可以提供更好的内存局部性,因此可以减少与内存和磁盘的数据传输。要启用向量化执行,请将下列选项设置为 true: hive.vectorized.execution.enabled=true hive.vectorized.execution.reduce.enabled=true 五、使用动态分区 在 Hive on Spark 中,使用动态分区(Dynamic Partitioning)可以显著提高查询性能,特别是当处理大量小文件时。动态分区会自动将查询结果分区,并将每个分区存储为一个单独的文件,这可以减少 HDFS 元数据操作量,并可以提高查询性能。 总之,通过对以上几个方面进行调优,可以显著提高 Hive on Spark 的查询性能和扩展性。同时,在实际生产环境中,还需要结合具体情况进行适当的调优和优化。 ### 回答3: Hive on Spark是在Hadoop上基于Spark进行数据处理和查询的引擎,它可以通过调优以提高其性能和效率。以下是几个提高Hive on Spark性能的方法: 1.调整Executor内存和Executor数量:在Spark中,Executor的数量和内存大小的选择会对性能产生非常大的影响。如果Executor的数量设置过大,又或者Executor的内存过小,都会导致任务的运行缓慢。因此,需要根据实际情况,合理设置Executor的数量和内存大小。通常情况下,Executor内存大约设置为系统可用内存的75%至80%。并且需要注意的是,在调整Executor内存和数量时,还需要考虑调整Spark的其他配置参数。 2.启用动态分区:启用动态分区可以大幅提高Hive on Spark的性能。动态分区可以将大型Hive on Spark数据集分割成多个小块,从而减少内存的使用,减轻Spark的压力,同时还可以加速数据的读写操作。可以在Hive on Spark中的hive-site.xml文件中添加以下代码来启用动态分区: hive.exec.dynamic.partition = true hive.exec.dynamic.partition.mode = nonstrict 3.启用Spark的动态资源分配:启用Spark的动态资源分配可以根据需要自动分配或释放资源,从而提高性能。这种方式可以避免因为资源浪费导致的性能不佳。可以在Spark的配置文件spark-defaults.conf中添加以下代码来启用动态资源分配: spark.dynamicAllocation.enabled=true spark.shuffle.service.enabled=true 4.使用适当的文件格式:不同的文件格式有不同的读写性能。如果Hive on Spark需要处理非常大的数据量,则推荐使用Apache Parquet文件格式,因为它可以使查询更加快速和高效。而对于要求较高的数据格式,如人工智能和机器学习工作负载,可以使用Apache ORC(Optimized Row Columnar)格式,因为它在数据压缩和性能方面都比Parquet更加优秀。 总之,对于Hive on Spark性能调优,需要考虑到各种因素,例如Executor的数量和内存大小、动态分区、动态资源分配和文件格式等。通过适当地调整这些参数,可以有效提高Hive on Spark的性能和效率。

hive on spark 调优

对于Hive on Spark的调优,有几个关键的配置可以考虑。首先,可以通过调整hive.auto.convert.join.noconditionaltask.size来控制将基础join转化为map join的阈值,从而影响性能。这个配置在Hive on MapReduce和Hive on Spark中都可以使用,但是两者的解释略有不同。 其次,可以通过设置一些Spark相关的配置来进行调优。例如,可以设置hive.execution.engine为spark来指定使用Spark作为执行引擎。还可以设置spark.executor.memory、spark.executor.cores、spark.executor.instances来调整Spark执行器的内存和核心资源分配。另外,设置spark.serializer为org.apache.spark.serializer.KryoSerializer可以改进序列化的性能。 此外,Hive on Spark相比于Hive on MapReduce有更好的性能,并且提供了相同的功能。用户的SQL不需要进行修改,就可以直接在Hive on Spark上运行。同时,UDF函数也被全部支持。 总结起来,在运行于YARN模式下的Hive on Spark的调优,可以关注以下几点: 1. 调整hive.auto.convert.join.noconditionaltask.size来控制基础join转化为map join的阈值。 2. 设置相关Spark配置,如hive.execution.engine、spark.executor.memory、spark.executor.cores、spark.executor.instances等,来优化资源分配和序列化性能。 3. 充分利用Hive on Spark的性能优势,无需修改SQL即可运行,并支持全部UDF函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [hive on spark 调优](https://blog.csdn.net/weixin_45489441/article/details/123252215)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Hive on Spark调优](https://blog.csdn.net/javastart/article/details/126041883)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

Hive on Spark源码分析DOC

Hive on Spark源码分析 Hive on Spark 源码分析是指将 Hive 默认的执行引擎 MapReduce 换成 Spark 或者 Tez,以满足实际场景中的需求。本文将对 Hive on Spark 的源码进行深入分析,涵盖其基本原理、运行模式、Hive...
recommend-type

win10下搭建Hadoop环境(jdk+mysql+hadoop+scala+hive+spark) 3.docx

在Windows 10环境下搭建Hadoop生态系统,包括JDK、MySQL、Hadoop、Scala、Hive和Spark等组件,是一项繁琐但重要的任务,这将为你提供一个基础的大数据处理平台。下面将详细介绍每个组件的安装与配置过程。 **1. JDK...
recommend-type

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码。这个游戏包含了基本的地图布局、玩家控制角色推动箱子到目标位置的功能,不过目前还只是一个简单的控制台版本,你可以根据后续的提示进一步扩展为图形界面版本并添加推流相关功能(推流相对复杂些,涉及到网络传输和流媒体协议等知识,需要借助如 FFmpeg 或者专门的流媒体库来实现,这里先聚焦游戏本身的逻辑构建)
recommend-type

基于simulink建立的PEMFC燃料电池机理模型(国外团队开发的,密歇根大学),包含空压机模型,空气路,氢气路,电堆等模型 可以正常进行仿真

基于simulink建立的PEMFC燃料电池机理模型(国外团队开发的,密歇根大学),包含空压机模型,空气路,氢气路,电堆等模型。 可以正常进行仿真。
recommend-type

基于springboot的高校教学档案管理系统设计与实现源码(java毕业设计完整源码+LW).zip

Web端功能1.文件分类管理(文件、图片和视频),可以检索文件(按照分类查看,也可以根据名字检索),可以删除和添加文件,文件可以下载,图片和视频可以在线查看播放2.文件有个物理位置的属性,例如“A柜14排”3.文件可以被用户借阅,可以查看到文件的借阅状态。4.可以查看借阅历史列表信息。(任何借阅的记录都保存下来,用列表的方式展现出来)。5.目标角色分教师、教学秘书、专业负责人、教学院长及管理员6.角色教师通过系统提供的界面,(1)输入教学成果,包括项目、论文、著作封面、获奖证书等,提供成果作证材料,秘书审核后再提交给专业负责人及教学院长审核;(2)输入教学资料,包括教学日历、教学大纲、考试考核方法改革申报表、课程试卷及答案等,上传图片或者PDF文档,提交给教学秘书、专业负责人及教学院长审核。7.教学秘书审核教师提交的教学成果,依据作证材料逐条审核,然后提交给专业负责人及教学院长再作审核。8.专业负责人和教学院长相继审核,给出通过意见或者退回。9.管理员角色负责管理维护系统内部教师信息。10.系统界面设计美观,具有较高的易用性,能够进行角色权限控制...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"