将这段代码转换为伪代码形式,checkpoint_path = './model_pth/dnn.h5' checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1,save_best_only=True, mode='max') early_stopping = tf.keras.callbacks .EarlyStopping(monitor ='val_loss', patience=200, verbose=1) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3, epsilon=1e-7) DNN_model.compile(loss='categorical_crossentropy', 优化器=optimizer, metrics=['accuracy']) callbacks_list = [checkpoint, early_stopping] start = time.time() history = DNN_model.fit(X_train, y_train, validation_split = 0.1, epochs=1000, batch_size=32, 详细=2 ,callbacks = callbacks_list) end = time.time() print('DNN模型培训时间: ',end - start)
时间: 2024-02-11 10:08:41 浏览: 127
```
设置checkpoint路径为'./model_pth/dnn.h5'
设置ModelCheckpoint回调函数,监控验证集准确率,保存最佳模型权重到checkpoint_path,输出保存信息,最大化监控指标。
设置EarlyStopping回调函数,监控验证集损失,如果连续200个epoch验证集损失没有改善就停止训练,输出停止信息。
设置Adam优化器,学习率为1e-3,epsilon为1e-7。
用交叉熵作为损失函数,Adam优化器进行优化,评价指标为准确率。
设置回调函数列表callbacks_list为[checkpoint, early_stopping]。
记录训练开始时间为start。
对DNN_model进行fit训练,使用X_train和y_train作为训练数据和标签,将10%的训练集用作验证集,训练1000个epoch,每个batch大小为32,输出每个epoch的训练信息,使用callbacks_list中的回调函数进行训练过程中的保存和停止,记录训练历史信息到history。
记录训练结束时间为end。
输出DNN模型训练时间为end - start。
```
相关问题
#train checkpoint_path = './model_pth/cnn.h5' checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1,save_best_only=True, mode='max') early_stopping = tf.keras.callbacks.EarlyStopping(monitor ='val_loss', patience=200, verbose=1) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4, epsilon=1e-7)
这段代码是用 TensorFlow 2.x 版本编写的卷积神经网络模型训练代码,包括了模型的保存、早停和优化器等功能。具体的代码实现如下(Python语言):
```python
# 导入需要的库
import tensorflow as tf
from tensorflow import keras
# 定义模型
model = keras.Sequential([
keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
keras.layers.MaxPooling2D((2,2)),
keras.layers.Flatten(),
keras.layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4, epsilon=1e-7),
loss='categorical_crossentropy',
metrics=['accuracy'])
# 定义回调函数
checkpoint_path = './model_pth/cnn.h5'
checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=200, verbose=1)
# 训练模型
model.fit(train_images, train_labels, epochs=1000, batch_size=128,
validation_data=(test_images, test_labels),
callbacks=[checkpoint, early_stopping])
```
其中,`tf.keras.callbacks.ModelCheckpoint` 和 `tf.keras.callbacks.EarlyStopping` 分别实现了模型保存和早停的功能,`tf.keras.optimizers.Adam` 则是优化器的设置。需要注意的是,这里的模型是一个简单的卷积神经网络,输入为 28x28 的灰度图像,输出为 10 类别的概率值。
将这段python代码转换为c语言伪代码形式checkpoint_path = './model_pth/dnn.h5' checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1,save_best_only=True, mode='max') early_stopping = tf.keras.callbacks.EarlyStopping(monitor ='val_loss', patience=200, verbose=1) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3, epsilon=1e-7) DNN_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) callbacks_list = [checkpoint, early_stopping] start = time.time() history = DNN_model.fit(X_train, y_train, validation_split = 0.1, epochs=1000, batch_size=32, verbose=2,callbacks = callbacks_list) end = time.time() print('DNN模型训练时间: ',end - start)
定义变量:
```
char* checkpoint_path = "./model_pth/dnn.h5";
float learning_rate = 1e-3;
float epsilon = 1e-7;
int patience = 200;
int epochs = 1000;
int batch_size = 32;
float* X_train;
float* y_train;
float* validation_split = 0.1;
float* history;
float start, end;
```
定义模型:
```
ModelCheckpoint checkpoint = {checkpoint_path, "val_accuracy", 1, 1, "max"};
EarlyStopping early_stopping = {"val_loss", patience, 1};
Adam optimizer = {learning_rate, epsilon};
compile(DNN_model, "categorical_crossentropy", optimizer, {"accuracy"});
Callback* callbacks_list[2] = {&checkpoint, &early_stopping};
```
训练模型:
```
start = time();
history = fit(DNN_model, X_train, y_train, validation_split, epochs, batch_size, callbacks_list, 2);
end = time();
printf("DNN模型训练时间: %f", end - start);
```
阅读全文
相关推荐















