matlab最小二乘法拟合
时间: 2023-08-24 10:04:56 浏览: 94
最小二乘 拟合 matlab
MATLAB中使用最小二乘法进行数据拟合可以使用polyfit函数。该函数可以拟合一组数据点的多项式拟合曲线,其函数格式为:
```matlab
p = polyfit(x,y,n)
```
其中,x和y分别为待拟合数据的向量,n为拟合多项式的阶数,p为拟合多项式系数的向量。
例如,我们有如下数据:
```matlab
x = [1, 2, 3, 4, 5];
y = [2.1, 3.9, 6.1, 8.2, 10.1];
```
我们想要用一个一次多项式拟合这些数据,可以使用以下代码:
```matlab
p = polyfit(x, y, 1);
```
这样就得到了拟合多项式的系数,p的值为:
```
p = 2.0200 0.0200
```
其中,p(1)为拟合多项式的斜率,p(2)为拟合多项式的截距。我们可以通过以下代码绘制出拟合曲线和原始数据点:
```matlab
% 绘制原始数据点
plot(x, y, 'o');
hold on;
% 生成拟合曲线上的点
x_fit = linspace(min(x), max(x), 100);
y_fit = polyval(p, x_fit);
% 绘制拟合曲线
plot(x_fit, y_fit, '-');
hold off;
```
这样就可以得到拟合曲线和原始数据点的图像。
阅读全文