逻辑回归matlab代码
时间: 2023-07-09 12:47:42 浏览: 121
以下是一个简单的逻辑回归的 Matlab 代码示例:
```matlab
% 定义训练数据
X = [0.5, 0.7, 1.2, 1.4, 1.7, 2.0, 2.5, 2.7, 3.0, 3.5];
Y = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1];
% 定义 sigmoid 函数
sigmoid = @(z) 1 ./ (1 + exp(-z));
% 初始化参数
theta = [0, 0];
% 定义代价函数
J = @(theta) (-1 / length(Y)) * sum(Y .* log(sigmoid(X * theta')) + (1 - Y) .* log(1 - sigmoid(X * theta')));
% 定义梯度下降函数
alpha = 0.1;
num_iters = 100;
for i = 1:num_iters
theta = theta - alpha * (1 / length(Y)) * sum((sigmoid(X * theta') - Y) .* X);
end
% 打印最终参数
theta
```
此代码实现了一个简单的逻辑回归模型,通过梯度下降方法求解参数 theta,最终输出得到的参数。注意,此代码仅用于演示逻辑回归的基本原理,实际应用中需要更加复杂的模型和优化算法。
相关问题
逻辑回归matlab代码实现
逻辑回归的MATLAB代码实现如下:
```matlab
XX = xlsread('训练数据.xls'); % 读取训练数据(包含训练样本XX及对应的标签y)
X = XX(:, 1:2); % 从训练数据中找出训练样本X
X = [X ones(10, 1)]; % 生成符合逻辑回归模型的X(加上逻辑回归模型中的常数项)
y = XX(:, 3); % 从训练数据中找出训练样本X对应的标签y
W = rand(3, 1); % 初始化逻辑回归系数W
T = 0; % 循环次数
sign = 1; % 循环进行标志
lr = 0.1; % 设定梯度下降学习速率(采用固定学习速率的梯度下降法)
% 循环
while (sign == 1)
P = sigmf(X * W, [1 0]); % 求逻辑回归模型输出值P
LW = X' * (P - y); % 求梯度LW
if (norm(LW) <= 0.001) || (T >= 150000) % 循环结束条件
sign = 0;
else
sign = 1;
T = T + 1;
W = W - (lr) * (LW); % 梯度更新
end
end
% 最终求得的逻辑回归系数
W = [0.7938; -2.2932; 12.1551]
% 绘制逻辑回归分类界线
x1 = -2.5:0.1:2;
x2 = ((-W(1)/W(2)) * x1) - (W(3)/W(2));
plot(x1, x2, 'r');
% 在此逻辑回归系数下,训练样本X在此逻辑回归模型中的输出为:
```
logestic逻辑回归matlab代码
下面是一个使用Matlab实现逻辑回归的示例代码:
```matlab
% 加载数据
data = load('data.txt');
X = data(:, 1:2);
y = data(:, 3);
% 绘制数据点
plotData(X, y);
% 添加偏置项
X = [ones(size(X, 1), 1) X];
% 初始化参数
initial_theta = zeros(size(X, 2), 1);
% 设置参数选项
options = optimset('GradObj', 'on', 'MaxIter', 400);
% 使用fminunc函数来优化参数
[theta, cost] = fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
% 绘制决策边界
plotDecisionBoundary(theta, X, y);
% 预测新样本的分类
prob = sigmoid([1, 45, 85] * theta);
fprintf('For a student with scores 45 and 85, we predict an admission probability of %f\n', prob);
% 计算训练集的准确率
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
```
其中,`plotData`函数用于绘制数据点,`costFunction`函数用于计算代价函数和梯度,`plotDecisionBoundary`函数用于绘制决策边界,`sigmoid`函数用于计算sigmoid函数的值,`predict`函数用于预测分类结果。
阅读全文
相关推荐














