多元逻辑回归matlab代码
时间: 2023-08-16 21:06:21 浏览: 132
对于多元逻辑回归的Matlab代码,可以使用以下代码实现:
```matlab
% Load saved matrices from file
load('ex3data1.mat');
% The matrices X and y will now be in your MATLAB environment
% Add bias term to X
X = [ones(size(X, 1), 1), X];
% Set initial parameters
num_labels = 10; % Number of labels (digits)
lambda = 1; % Regularization parameter
initial_theta = zeros(size(X, 2), 1); % Initial parameters
% Use fmincg function to optimize cost function
options = optimset('GradObj', 'on', 'MaxIter', 50);
= fmincg(@(t)(lrCostFunction(t, X, y, lambda)), initial_theta, options);
% Predict the labels for training set
pred = predict(theta, X);
% Accuracy
accuracy = mean(double(pred == y)) * 100;
fprintf('Training set accuracy: %f%%\n', accuracy);
```
这段代码首先加载了保存的数据集(X和y),然后为X添加偏置项。接下来,设定了一些初始参数,包括标签的数量(num_labels),正则化参数(lambda)和初始参数(initial_theta)。然后使用fmincg函数来优化代价函数,通过最小化代价函数来学习参数(theta)。最后,使用学习到的参数对训练集进行预测,并计算准确率。
请注意,上述代码中的`lrCostFunction`和`predict`函数是需要根据具体的逻辑回归模型进行实现的。这里只提供了一个框架示例,具体实现需要根据实际情况进行调整。
:MINST的手写数字数据库
:感知机算法
:逻辑斯蒂回归模型<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [机器学习:使用matlab实现逻辑回归解决数字识别(多元分类)问题](https://blog.csdn.net/ShadyPi/article/details/122643694)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [逻辑斯蒂回归 matlab实现](https://blog.csdn.net/weixin_46257458/article/details/115791362)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文