proximal gradient descent代码
时间: 2023-07-23 14:07:28 浏览: 95
以下是一个简单的近端梯度下降法的代码示例:
```python
import numpy as np
def proximal_gradient_descent(x0, f, grad_f, prox, step_size, max_iters):
"""
近端梯度下降法
参数:
x0:初始点
f:目标函数
grad_f:梯度函数
prox:近端算子
step_size:学习率(步长)
max_iters:最大迭代次数
返回:
x:最优解
"""
x = x0
for i in range(max_iters):
grad = grad_f(x)
x_new = prox(x - step_size * grad, step_size) # 更新x的近端点
if np.linalg.norm(x_new - x) < 1e-6: # 检查收敛条件
break
x = x_new
return x
```
使用时,需要自定义目标函数 `f`、梯度函数 `grad_f` 和近端算子 `prox`。然后可以传入初始点 `x0`、学习率 `step_size` 和最大迭代次数 `max_iters` 进行近端梯度下降。
相关问题
proximal 算子
### Proximal Operator in Optimization and Mathematics
In the context of optimization, a **proximal operator** is an essential tool used primarily within convex analysis and non-smooth optimization problems. For any given function \( f \), the proximal mapping or operator associated with this function at point \( y \) can be defined as follows:
\[ \text{prox}_{\lambda f}(y) := \arg\min_x \left( f(x) + \frac{1}{2\lambda} \| x - y \|^2_2 \right) \]
where \( \lambda > 0 \)[^1]. This formulation effectively balances between minimizing the original objective function \( f(x) \) while also keeping \( x \) close to some initial guess \( y \). The parameter \( \lambda \) controls how much emphasis should be placed on each term.
The beauty of using such operators lies in their ability to handle complex constraints directly without needing explicit projections onto feasible sets during iterative updates. Moreover, many classical algorithms like gradient descent become special cases when viewed under the lens of proximal operations.
For discrete variational autoencoders discussed elsewhere, incorporating proximal terms into loss functions allows more robust training processes by stabilizing gradients over time steps. Similarly, belief propagation methods benefit from similar principles where messages passed among nodes incorporate local regularization effects that promote faster convergence towards optimal solutions[^2].
#### Example Code Demonstrating Use of Proximal Operators
Below demonstrates Python code implementing soft-thresholding operation which serves as one common example of applying proximal mappings specifically designed for Lasso regression type penalties.
```python
import numpy as np
def soft_threshold(y, lambda_val):
"""Soft thresholding operator."""
return np.sign(y) * np.maximum(np.abs(y)-lambda_val, 0)
# Test case demonstrating usage
test_input = [-3., 1., 4.]
threshold_value = 2.
output = soft_threshold(test_input, threshold_value)
print(f"Input values after applying proximal operator:\n {output}")
```
近端梯度下降算法代码matlab
以下是近端梯度下降算法的 MATLAB 代码示例:
```matlab
function [x, history] = proximal_gradient_descent(A, b, lambda, max_iter, tol)
% 初始化变量
x = zeros(size(A, 2), 1);
history = zeros(max_iter, 1);
% 迭代更新
for iter = 1:max_iter
% 计算梯度
grad = A' * (A * x - b);
% 近端算子
x_new = x - (1 / norm(A)^2) * grad;
x = sign(x_new) .* max(abs(x_new) - lambda / norm(A)^2, 0);
% 计算损失函数值
history(iter) = 0.5 * norm(A * x - b)^2 + lambda * norm(x, 1);
% 判断收敛条件
if iter > 1 && abs(history(iter) - history(iter-1)) < tol
break;
end
end
end
```
使用该代码,你需要提供以下参数:
- A:设计矩阵
- b:观测向量
- lambda:正则化参数
- max_iter:最大迭代次数
- tol:收敛容差
该代码实现了近端梯度下降算法,用于求解带有 L1 正则化的线性回归问题。在每次迭代中,它计算梯度并更新变量 x,然后应用近端算子来实现 L1 正则化。迭代过程中还计算损失函数值,并根据收敛条件判断是否终止迭代。
阅读全文