LSH 欧氏距离 KNN 代码
时间: 2024-03-02 18:21:50 浏览: 118
以下是使用 Locality Sensitive Hashing (LSH) 和欧氏距离计算K近邻的Python代码示例:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
from scipy.spatial.distance import euclidean
class LSHKNN:
def __init__(self, n_hashes=10, hash_size=10, n_neighbors=5):
self.n_hashes = n_hashes
self.hash_size = hash_size
self.n_neighbors = n_neighbors
self.hash_tables = []
self.data = None
def fit(self, data):
self.data = data
n_samples, n_features = data.shape
random_vectors = np.random.randn(n_features, self.n_hashes * self.hash_size)
# Split data into hash buckets
for i in range(self.n_hashes):
hash_table = {}
projection = random_vectors[:, i*self.hash_size:(i+1)*self.hash_size]
hashes = np.dot(data, projection)
for j, h in enumerate(hashes):
if tuple(h) not in hash_table:
hash_table[tuple(h)] = []
hash_table[tuple(h)].append(j)
self.hash_tables.append(hash_table)
def predict(self, query):
# Compute query hash values
n_samples, n_features = self.data.shape
random_vectors = np.random.randn(n_features, self.n_hashes * self.hash_size)
projection = random_vectors[:, :self.hash_size]
query_hash = np.dot(query, projection)
# Find candidate neighbors
candidate_neighbors = set()
for h in tuple(query_hash):
if tuple(h) in self.hash_tables[0]:
candidate_neighbors.update(self.hash_tables[0][tuple(h)])
# Refine candidates
candidate_distances = []
for i in candidate_neighbors:
d = euclidean(query, self.data[i])
if len(candidate_distances) < self.n_neighbors or d < max(candidate_distances):
candidate_distances.append(d)
candidate_distances.sort()
if len(candidate_distances) > self.n_neighbors:
candidate_distances = candidate_distances[:self.n_neighbors]
# Find exact neighbors among candidates
nbrs = NearestNeighbors(n_neighbors=self.n_neighbors, algorithm='brute', metric='euclidean').fit(self.data[candidate_neighbors])
distances, indices = nbrs.kneighbors([query])
return distances[0], indices[0]
```
使用示例:
```python
import numpy as np
# Generate random data
np.random.seed(0)
data = np.random.rand(100, 10)
# Create LSHKNN object and fit data
lshknn = LSHKNN(n_hashes=5, hash_size=2, n_neighbors=5)
lshknn.fit(data)
# Generate a random query
query = np.random.rand(10)
# Find nearest neighbors to query
distances, indices = lshknn.predict(query)
print("Distances:", distances)
print("Indices:", indices)
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044901.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![application/x-zip](https://img-home.csdnimg.cn/images/20210720083736.png)
![application/x-zip](https://img-home.csdnimg.cn/images/20210720083736.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/pdf](https://img-home.csdnimg.cn/images/20210720083512.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)