输入:待排列的全部圆的半径R集合,圆的总数n 输出:最小圆排列距离Vmin,最优排列方案Path 算法: 1. 令Vmin为一个理论上绝对足够长的距离, Path=[] 2. 令ANode=zeros(n+1,n), ANode(1,:)=1:n, ANode(n+1,:)=1 (最后一行记录X中已确定部分数量) 3. 根据ANode(:,1)的信息计算出AVal和ABound(利用代价函数)对应的值 4. 当ANode非空时循环 5. --令AVal中最小值下标为loc, 则令X=ANode(1:n,loc), k=ANode(n+1,loc) 6. --如果ABound(loc)小于Vmin 7. ----对X(k+1)={1,2,...,n}-{X(1),X(2),...,X(k)}进行循环 8. ------如果k+1小于n, 即X(1:(k+1))为非叶结点 9. --------令lb为由X的前k+1个部分信息利用代价函数计算出的ABound的值 10. --------若lb小于Vmin,则把[X;k+1]加入ANode,把X对应的当前价值加入AVal,把lb加入Abound 11. ------否则 12. --------计算X的当前价值,并确定是否更新Vmin和Path 13. --从ANode中删去第loc列,从AVal中删去第loc个元素,从ABound中删去第loc个元素 写出其对应的Matlab程序

时间: 2024-02-10 22:10:30 浏览: 68
以下是对应的Matlab程序: ```matlab function [Vmin, Path] = MinCircleArrange(R, n) % 输入:待排列的全部圆的半径R集合,圆的总数n % 输出:最小圆排列距离Vmin,最优排列方案Path % 1. 初始化 Vmin = inf; % 初始值为正无穷 Path = []; % 初始路径为空 ANode = zeros(n+1, n); % 初始化ANode ANode(1,:) = 1:n; % 第一行填入1~n ANode(n+1,:) = 1; % 最后一行填入1 AVal = zeros(1, n); % 初始化AVal ABound = zeros(1, n); % 初始化ABound % 2. 计算AVal和ABound for j = 1:n AVal(j) = 2 * R(j); for i = 1:j-1 AVal(j) = max(AVal(j), AVal(i) + 2*sqrt(R(i)*R(j))); end ABound(j) = AVal(j) + 2*sqrt(R(j)*(n-j)); end % 3. 循环处理 while ~isempty(ANode) % 选择最小的AVal [minAVal, loc] = min(AVal); if ABound(loc) < Vmin % 如果ABound小于Vmin X = ANode(1:n, loc); % 取出X k = ANode(n+1, loc); for i = setdiff(1:n, X(1:k)) if k < n % 非叶结点 lb = AVal(k) + 2*sqrt(R(X(k+1))*R(i)) + 2*sqrt(R(i)*(n-k-1)); if lb < Vmin X(k+1) = i; ANode(:, end+1) = [X; k+1]; % 将[X; k+1]加入ANode AVal(end+1) = AVal(k) + 2*sqrt(R(X(k+1))*R(X(k))) + 2*R(X(k+1)); % 计算对应的AVal ABound(end+1) = lb; % 将lb加入ABound end else % 叶结点 tmpDist = R(X(1)) + R(i) + 2*sqrt(R(X(1))*R(i)); % 计算当前排列的距离 if tmpDist < Vmin % 如果当前距离小于Vmin,则更新Vmin和Path Vmin = tmpDist; Path = X; end end end end % 从ANode、AVal、ABound中删除对应的项 ANode(:, loc) = []; AVal(loc) = []; ABound(loc) = []; end ``` 该算法是一种剪枝搜索算法,通过代价函数的计算,可以将搜索空间缩小,从而减少计算量。时间复杂度为O(n^2*2^n),当圆的数量较大时,计算量仍然很大,但是相比于暴力枚举的方法,已经有了很大的优化。
阅读全文

相关推荐

最新推荐

recommend-type

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

【东证期货-2024研报】短期关注天气能否触发惜售.pdf

研究报告
recommend-type

客运自助售票小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

客运自助售票小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

一个完整yolov8整合包.zip

一个完整yolov8整合包yolov8-一体机一个完整yolov8整合包参考仓库https://github.com/z1069614715/objectdetection_scriptB站教学视频https://www.bilibili.com/video/BV15g4y157MF/
recommend-type

解决CAM350导入提示“找不到首标题%,载入停止”

解决CAM350导入gerber提示“找不到首标题%,载入停止” 把文件放到gerber上一层或gerber层,运行此bat命令即可
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。