const strVersion g_version_info __attribute__((at(0x01001000 + 0x410))) = { __DATE__, __TIME__, "V1.01", "PT7006", "" };

时间: 2024-06-24 18:01:00 浏览: 133
这个代码片段是在C语言中定义了一个全局常量字符串数组,使用了特定的编译器扩展`__attribute__((at(0x01001000 + 0x410)))`来指定其内存位置。让我们详细解释一下: 1. `const strVersion g_version_info`: 定义了一个名为`g_version_info`的全局常量变量,类型为`strVersion`。`const`关键字表明这个变量的值在初始化后不能被修改。 2. `__attribute__((at(0x01001000 + 0x410)))`: 这是一个编译器特定的属性,表示这个`g_version_info`变量应该被放置在内存地址`0x01001000`加上偏移量`0x410`的位置。这通常用于程序中的数据布局或优化,例如将常量数据存储在代码段(text section)以提高访问速度。 3. `__DATE__`, `__TIME__`: 这是预处理器宏,会替换为当前的日期和时间。在编译时,这些宏会被实际的编译时间所替换。 4. `"V1.01"`, `"PT7006"`, `""`: 这些是硬编码的字符串,分别代表版本号、产品型号和可能的额外信息,具体含义取决于上下文。
相关问题

const uint8 ModbusFunc_ReadCoilStatus = 0x01; const uint8 ModbusFunc_ReadInputStatus = 0x02; const uint8 ModbusFunc_ReadHoldReg = 0x03; const uint8 ModbusFunc_ReadInputReg = 0x04; const uint8 ModbusFunc_ForceSigCoil = 0x05; const uint8 ModbusFunc_PresetSigReg = 0x06; const uint8 ModbusFunc_ReadExcptStatus = 0x07; const uint8 ModbusFunc_FetchEventCount = 0x0B; const uint8 ModbusFunc_FetchEventLog = 0x0C; const uint8 ModbusFunc_ForceMtlCoil = 0x0F; const uint8 ModbusFunc_PresetMtlReg = 0x10; const uint8 ModbusFunc_ReportSlaveId = 0x11; const uint8 ModbusFunc_ReadGeneralRef = 0x14; const uint8 ModbusFunc_WriteGeneralRef = 0x15; const uint8 ModbusFunc_MaskWrite4XReg = 0x16; const uint8 ModbusFunc_ReadWrite4XReg = 0x17; const uint8 ModbusFunc_ReadFifoQueue = 0x18;

这段代码定义了一系列常量,用于表示 Modbus 协议中不同功能码的含义。 这些常量的命名方式为 `ModbusFunc_XXX`,其中 `XXX` 表示相应的功能名称。 以下是每个常量及其对应的功能码: - `ModbusFunc_ReadCoilStatus`:读线圈状态,功能码为 `0x01`。 - `ModbusFunc_ReadInputStatus`:读输入状态,功能码为 `0x02`。 - `ModbusFunc_ReadHoldReg`:读保持寄存器,功能码为 `0x03`。 - `ModbusFunc_ReadInputReg`:读输入寄存器,功能码为 `0x04`。 - `ModbusFunc_ForceSigCoil`:写单个线圈,功能码为 `0x05`。 - `ModbusFunc_PresetSigReg`:写单个保持寄存器,功能码为 `0x06`。 - `ModbusFunc_ReadExcptStatus`:读异常状态,功能码为 `0x07`。 - `ModbusFunc_FetchEventCount`:读事件计数,功能码为 `0x0B`。 - `ModbusFunc_FetchEventLog`:读事件日志,功能码为 `0x0C`。 - `ModbusFunc_ForceMtlCoil`:写多个线圈,功能码为 `0x0F`。 - `ModbusFunc_PresetMtlReg`:写多个保持寄存器,功能码为 `0x10`。 - `ModbusFunc_ReportSlaveId`:报告从设备 ID,功能码为 `0x11`。 - `ModbusFunc_ReadGeneralRef`:读通用参考,功能码为 `0x14`。 - `ModbusFunc_WriteGeneralRef`:写通用参考,功能码为 `0x15`。 - `ModbusFunc_MaskWrite4XReg`:屏蔽写多个寄存器,功能码为 `0x16`。 - `ModbusFunc_ReadWrite4XReg`:读写多个寄存器,功能码为 `0x17`。 - `ModbusFunc_ReadFifoQueue`:读 FIFO 队列,功能码为 `0x18`。 这些常量可以用于识别和处理 Modbus 协议中不同类型的功能。根据实际需求,可以使用相应的常量来指定所需的功能。

以下代码什么意思const uint8 ModbusFunc_ReadCoilStatus = 0x01; const uint8 ModbusFunc_ReadInputStatus = 0x02; const uint8 ModbusFunc_ReadHoldReg = 0x03; const uint8 ModbusFunc_ReadInputReg = 0x04; const uint8 ModbusFunc_ForceSigCoil = 0x05; const uint8 ModbusFunc_PresetSigReg = 0x06; const uint8 ModbusFunc_ReadExcptStatus = 0x07; const uint8 ModbusFunc_FetchEventCount = 0x0B; const uint8 ModbusFunc_FetchEventLog = 0x0C; const uint8 ModbusFunc_ForceMtlCoil = 0x0F; const uint8 ModbusFunc_PresetMtlReg = 0x10; const uint8 ModbusFunc_ReportSlaveId = 0x11; const uint8 ModbusFunc_ReadGeneralRef = 0x14; const uint8 ModbusFunc_WriteGeneralRef = 0x15; const uint8 ModbusFunc_MaskWrite4XReg = 0x16; const uint8 ModbusFunc_ReadWrite4XReg = 0x17; const uint8 ModbusFunc_ReadFifoQueue = 0x18;

这段代码定义了一些常量,用于表示不同的Modbus功能码。Modbus是一种通信协议,用于在不同设备之间进行通信和数据交换。每个功能码代表了不同的操作或请求类型。 以下是每个功能码的含义: - `ModbusFunc_ReadCoilStatus`(0x01):读取线圈状态,用于读取开关量输出的状态。 - `ModbusFunc_ReadInputStatus`(0x02):读取输入状态,用于读取开关量输入的状态。 - `ModbusFunc_ReadHoldReg`(0x03):读取保持寄存器,用于读取16位或32位的二进制数据。 - `ModbusFunc_ReadInputReg`(0x04):读取输入寄存器,用于读取16位或32位的二进制数据。 - `ModbusFunc_ForceSigCoil`(0x05):强制单个线圈状态,用于控制开关量输出的状态。 - `ModbusFunc_PresetSigReg`(0x06):预置单个保持寄存器,用于设置16位或32位的二进制数据。 - `ModbusFunc_ReadExcptStatus`(0x07):读取异常状态,用于读取设备的异常状态信息。 - `ModbusFunc_FetchEventCount`(0x0B):获取事件计数,用于获取事件的数量。 - `ModbusFunc_FetchEventLog`(0x0C):获取事件日志,用于获取事件的详细信息。 - `ModbusFunc_ForceMtlCoil`(0x0F):强制多个线圈状态,用于控制多个开关量输出的状态。 - `ModbusFunc_PresetMtlReg`(0x10):预置多个保持寄存器,用于设置多个16位或32位的二进制数据。 - `ModbusFunc_ReportSlaveId`(0x11):报告从设备ID,用于从设备向主设备报告其ID。 - `ModbusFunc_ReadGeneralRef`(0x14):读取通用参考,用于读取通用参考数据。 - `ModbusFunc_WriteGeneralRef`(0x15):写入通用参考,用于写入通用参考数据。 - `ModbusFunc_MaskWrite4XReg`(0x16):屏蔽写入4X寄存器,用于按位屏蔽的方式写入16位或32位的二进制数据。 - `ModbusFunc_ReadWrite4XReg`(0x17):读写4X寄存器,用于同时读取和写入16位或32位的二进制数据。 - `ModbusFunc_ReadFifoQueue`(0x18):读取FIFO队列,用于读取FIFO队列中的数据。 这些常量可以在代码中用于表示不同的Modbus功能码,并且根据需要进行使用。这些功能码定义了不同操作类型,可以在Modbus通信中进行数据读取、数据写入和设备控制等操作。
阅读全文

相关推荐

const int latchPin = 8; // ?????? const int clockPin = 12; // ?????? const int dataPin = 11; // ???? const int LOAD_PIN = 10; // ?????? const int CLK_PIN = 13; // ?????? const int DATA_PIN = 9; // ???? int hour = 0; // ?? int minute = 0; // ?? int second = 0; // ?? unsigned long previousMillis = 0; void getTime() { unsigned long currentMillis = millis(); if (currentMillis - previousMillis >= 1000) { previousMillis = currentMillis; second++; if (second == 60) { second = 0; minute++; if (minute == 60) { minute = 0; hour++; if (hour == 24) { hour = 0; } } } } } // ???? void displayClock() { int hour_1 = hour / 10; int hour_2 = hour % 10; int minute_1 = minute / 10; int minute_2 = minute % 10; int second_1 = second / 10; int second_2 = second % 10; writeMatrix(0, hour_1); writeMatrix(1, hour_2); writeMatrix(2, 10); // ?? writeMatrix(3, minute_1); writeMatrix(4, minute_2); writeMatrix(5, 10); // ?? writeMatrix(6, second_1); writeMatrix(7, second_2); } // ??????LED??? void writeMatrix(int index, int value) { // ??LED????? byte matrix[] = { 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00 }; switch (value) { case 0: matrix[0] = 0x3c; matrix[1] = 0x42; matrix[2] = 0x42; matrix[3] = 0x42; matrix[4] = 0x42; matrix[5] = 0x42; matrix[6] = 0x3c; matrix[7] = 0x00; break; case 1: matrix[0] = 0x00; matrix[1] = 0x00; matrix[2] = 0x02; matrix[3] = 0xfe; matrix[4] = 0x00; matrix[5] = 0x00; matrix[6] = 0x00; matrix[7] = 0x00; break;代码中的matrix如何定义的

最新推荐

recommend-type

linux创建线程之pthread_create的具体使用

int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void*), void *restrict arg); ``` 1. `tidp`: 这是第一个参数,类型为`pthread_t`的指针,用于接收新...
recommend-type

详细解析命令行的getopt_long()函数

int getopt_long(int argc, char * const argv[], const char *optstring, const struct option *longopts, int *longindex); ``` - `argc`: 命令行参数的计数,通常从 `main()` 函数的 `argc` 参数传递。 - `argv`...
recommend-type

Linux中mkdir函数与Windows中_mkdir函数的区别

int mkdir(const char *pathname, mode_t mode); ``` 这里的`pathname`参数是待创建目录的路径名,而`mode`则是一个整型变量,用于指定新创建目录的权限。`mode`可以设置各种权限,包括文件所有者的读、写、执行...
recommend-type

C++标准库:std_set作为一个有序集合

3. 查找元素:使用find函数可以在集合中查找元素,例如`std::set<int>::const_iterator result = set.find(98)`。 4. 交换集合:使用std::swap函数可以交换两个集合的内容,例如`std::swap(set, other)`。 5. 清楚...
recommend-type

关于vs strcpy_s()和strcat_s()用法探究

errno_t strcpy_s(char *strDestination, size_t numberOfElements, const char *strSource); ``` 其中,strDestination是目标字符串,numberOfElements是目标字符串的大小,strSource是源字符串。 例如: ```c ...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。