eigen_deprecated const unsigned int alignedbit = 0x80;
时间: 2023-05-01 13:03:57 浏览: 280
这句话的意思是“b'eigen_deprecated const unsigned int alignedbit = 0x80;'”是Eigen中已被弃用的常量,它是指定对齐位数的常量,数值为0x80。”。
相关问题
使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::vector<double> eigen_list;
MatrixXd data(6, 6);
data << 1, 2, 4, 7, 6, 3,
3, 20, 1, 2, 5, 4,
2, 0, 1, 5, 8, 6,
5, 3, 3, 6, 3, 2,
6, 0, 5, 2, 19, 3,
5, 2, 4, 9, 6, 3;
MatrixXd g_csi_corr = data.transpose() * data / 6.0;
EigenSolver<MatrixXd> es(g_csi_corr);
VectorXd eigenvalue = es.eigenvalues().real();
std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl;
eigen_list.push_back(eigenvalue.maxCoeff());
eigen_list.push_back(1.22);
eigen_list.push_back(-54.21);
eigen_list.push_back(8.44);
eigen_list.push_back(-27.83);
eigen_list.push_back(33.12);
//eigen_list.push_back(40.29);
std::cout << "eigen_list: ";
for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it)
std::cout << *it << " ";
std::cout << std::endl;
int num1 = eigen_list.size();
MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1);
VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose();
VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose();
double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff());
VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff());
double tri_threshold = eigen_a5.mean();
std::cout << "tri_threshold: " << tri_threshold << std::endl;
return 0;
}
请解释下面代码:eigen_values, eigen_vectors = eig(A_A_T)
这是一个计算矩阵A的特征值和特征向量的代码。eig()函数可以接受一个矩阵作为参数,并返回矩阵的特征值和特征向量。在这里,A_A_T是矩阵A的转置和自己的乘积,即A * A.T。eigen_values是一个包含A的特征值的数组,eigen_vectors是一个包含A的特征向量的数组,这两个数组中的元素是一一对应的。特征值和特征向量在许多数学和物理学问题中使用,并在数据分析和模式识别中也有广泛的应用。
阅读全文