def generate_midi(generator, output_file, start_sequence): # 加载模型参数 generator.load_weights('weights.hdf5') # 计算音符和和弦的数量 notes = load_midi(start_sequence) pitchnames = sorted(set(notes)) n_vocab = len(set(notes)) # 准备输入序列 sequence_length = 100 note_to_int = dict((note, number) for number, note in enumerate(pitchnames)) network_input = [] for i in range(0, len(notes) - sequence_length, 1): sequence_in = notes[i:i + sequence_length] network_input.append([note_to_int[char] for char in sequence_in]) # 生成 MIDI 文件 start = np.random.randint(0, len(network_input)-1) int_to_note = dict((number, note) for number, note in enumerate(pitchnames)) pattern = network_input[start] prediction_output = [] for note_index in range(500): prediction_input = np.reshape(pattern, (1, len(pattern), 1)) prediction_input = prediction_input / float(n_vocab) prediction = generator.predict(prediction_input, verbose=0) index = np.argmax(prediction) result = int_to_note[index] prediction_output.append(result) pattern.append(index) pattern = pattern[1:len(pattern)] offset = 0 output_notes = [] # 创建音符和和弦对象 for pattern in prediction_output: # 如果是和弦 if ('.' in pattern) or pattern.isdigit(): notes_in_chord = pattern.split('.') notes = [] for current_note in notes_in_chord: new_note = note.Note(int(current_note)) new_note.storedInstrument = instrument.Piano() notes.append(new_note) new_chord = chord.Chord(notes) new_chord.offset = offset output_notes.append(new_chord) # 如果是音符 else: new_note = note.Note(pattern) new_note.offset = offset new_note.storedInstrument = instrument.Piano() output_notes.append(new_note) # 增加偏移量 offset += 0.5 # 创建 MIDI 流对象 midi_stream = stream.Stream(output_notes) # 保存 MIDI 文件 midi_stream.write('midi', fp=output_file)

时间: 2024-02-14 21:11:12 浏览: 83
这段代码是用来生成 MIDI 音乐的,其中使用了一个生成器模型来生成音乐。在生成 MIDI 音乐之前,先加载模型参数,并准备输入序列。接下来,从输入序列中随机选择一个起始点,然后使用生成器模型来预测下一个音符或和弦。生成的音符或和弦会被添加到预测输出列表中,同时也会更新当前输入序列,以便用于下一个预测。最后,将预测输出转换成音符和和弦对象,并将它们添加到 MIDI 流对象中,最终生成 MIDI 文件。
阅读全文

相关推荐

最新推荐

recommend-type

使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法

使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法 本篇文章主要介绍了使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法,该方法通过使用cmake-gui和VS2019实现在Windows 10环境下编译libcef_dll_...
recommend-type

DC工具中set_dont_touch和set_size_only的区别.doc

在集成电路设计领域,DC(Design Compiler)是一款广泛使用的综合工具,它能够将高级语言描述的逻辑设计转换成门级网表,以便进一步进行布局布线。在这个过程中,设计师有时需要对某些特定部分进行保护,避免在综合...
recommend-type

win10在vs2015下编译opencv4.2_gpu版本.docx

在Windows 10环境下,利用Visual Studio 2015(VS2015)编译OpenCV 4.2的GPU版本是一项重要的任务,因为这样可以充分利用GPU加速,提高深度学习模型的运行效率。OpenCV 4.2是该库的一个较新版本,包含了丰富的深度...
recommend-type

Solidwork_Workbench_Maxwell参数化.pdf

通过修改参数值(如图5.1),然后刷新“A2 Geometry”(图5.2),再在Maxwell中执行“Generate”(图5.3),就可以实时看到模型的变化,实现了设计的动态更新。 总的来说,Solidwork、Workbench和Maxwell的参数化...
recommend-type

XX集团_数据仓库命名规范.docx

- **数据包**:数据包(如PL/SQL包)的命名应描述其包含的功能集合,如“pkg_data_loader”表示数据加载包。 - **序列**:序列名称通常与它所关联的实体相关,如“seq_order_id”表示订单ID的序列。 - **变量**...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。