UNet经典模型实战
时间: 2023-09-16 18:10:00 浏览: 81
UNet是一种经典的语义分割模型,其结构简单而有效。以下是一个使用PyTorch实现UNet模型的示例代码:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]):
super().__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNet
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Up part of UNet
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# Down part of UNet
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
# Up part of UNet
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = nn.functional.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
```
上述代码中,DoubleConv是UNet中使用的基本模块,包含两个3x3卷积层和一个ReLU激活函数。UNet类中,首先定义了一个Down part,其中包含多个DoubleConv模块和一个MaxPool2d层,用于从输入图像中提取特征。然后定义了一个Bottleneck模块,用于从提取的特征中进一步提取信息。最后定义了一个Up part,其中包含多个ConvTranspose2d层和多个DoubleConv模块,用于将特征图上采样并与Down part中的对应特征图拼接,最终输出分割结果。
使用该模型进行训练时,可以使用像Dice Loss或Cross-Entropy Loss等常见的分割任务损失函数,同时可以使用像Adam或SGD等常见的优化器进行模型优化。
阅读全文