python音频聚类_python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)
时间: 2023-06-29 07:09:15 浏览: 292
对于音频聚类,我们可以先将音频转化成MFCC(Mel-Frequency Cepstral Coefficients)特征向量,然后再进行聚类。下面是Python实现鸢尾花三种聚类算法的示例代码:
```python
import numpy as np
from sklearn import datasets
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.metrics import adjusted_rand_score
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# K-means 聚类
km = KMeans(n_clusters=3, random_state=0)
km.fit(X)
pred_km = km.labels_
ari_km = adjusted_rand_score(y, pred_km)
print("K-means ARI: %.3f" % ari_km)
# 层次聚类
ac = AgglomerativeClustering(n_clusters=3)
ac.fit(X)
pred_ac = ac.labels_
ari_ac = adjusted_rand_score(y, pred_ac)
print("Agglomerative Clustering ARI: %.3f" % ari_ac)
# DBSCAN 聚类
db = DBSCAN(eps=0.8, min_samples=5)
db.fit(X)
pred_db = db.labels_
ari_db = adjusted_rand_score(y, pred_db)
print("DBSCAN ARI: %.3f" % ari_db)
```
其中,调用`KMeans()`、`AgglomerativeClustering()`和`DBSCAN()`方法分别进行K-means聚类、层次聚类和DBSCAN聚类,并使用`adjusted_rand_score()`计算ARI(Adjusted Rand Index)指标来评估聚类结果的好坏。
阅读全文